ON THE MAXIMUM DENSITY
OF MINIMAL ASYMPTOTIC BASES

MELVYN B. NATHANSON AND ANDRÁS SÁRKÖZY

(Communicated by Larry J. Goldstein)

Abstract. A set A of nonnegative integers is an asymptotic basis of order h if every sufficiently large integer is the sum of h elements of A. It is proved that if A is an asymptotic basis of order h with lower asymptotic density $d_L(A) > 1/h$, then there is a set W contained in A such that W has positive asymptotic density and $A \setminus W$ is an asymptotic basis of order h. This implies that if A is a minimal asymptotic basis of order h, then $d_L(A) \leq 1/h$.

Let A be a subset of the nonnegative integers \mathbb{N}. Denote by hA the set of all numbers n that can be written in the form $n = a_1 + \cdots + a_h$, where $a_i \in A$ for $i = 1, \ldots, h$ and the a_i are not necessarily distinct. The set A is a basis of order h if $hA = \mathbb{N}$. If hA contains every sufficiently large integer, then A is an asymptotic basis of order h. Much of classical additive number theory is the study of special sets A that are bases or asymptotic bases of order h for some $h \geq 2$.

Minimal asymptotic bases form an important extremal class in additive number theory. The asymptotic basis A of order h is minimal if no proper subset of A is an asymptotic basis of order h. It follows that if A is minimal, then for every element $a \in A$ there must be infinitely many positive integers n, each of whose representations as a sum of h elements of A includes the number a as a summand. Stöhr [7] introduced the concept of minimal asymptotic basis, and Härtter [3] proved that minimal asymptotic bases of order h exist for all $h \geq 2$. Erdös and Nathanson [1] survey recent results on minimal asymptotic bases.

For any set A of integers, the counting function of A, denoted $A(x)$, is defined by $A(x) = \text{card}\{a \in A|1 \leq a \leq x\}$. The lower asymptotic density of A, denoted $d_L(A)$, is defined by $d_L(A) = \liminf_A(x)/x$. If $\alpha = \lim A(x)/x$ exists, then α is called the asymptotic density of A, and denoted $d(A)$.

For every $h \geq 2$, Nathanson [5, 6] has constructed minimal asymptotic bases A of order h that satisfy $A(x) \ll x^{1/h}$. Since $A(x) \gg x^{1/h}$ for every...
asymptotic basis A of order h, it follows that these examples are the “thinnest” possible minimal asymptotic bases. Erdös and Nathanson [2] have recently constructed minimal asymptotic bases A of order h with $d(A) = 1/h$. In this paper we prove that these are the “fattest” possible minimal asymptotic bases, in the sense that $d_L(A) \leq 1/h$ for every minimal asymptotic basis A of order h. The proof uses a deep result of Kneser on the lower asymptotic density of sums of sets of integers.

Let A and B be sets of nonnegative integers. We shall write $A \sim B$ if A and B coincide for all sufficiently large integers. For $g \geq 1$, let $B^{(g)}$ be the set of all integers t such that $t \equiv b \pmod{g}$ for some $b \in B$. Let $h \geq 2$. Kneser [4] proved that either $d_L(hB) \geq hd_L(B)$ or there exists an integer $g \geq 1$ such that $hB \sim hB^{(g)}$ and $d_L(hB) \geq hd_L(B) - (h - 1)/g$.

Theorem 1. Let $h \geq 2$ and let A be an asymptotic basis of order h. If $B \subset A$ and $d_L(B) > 1/h$, then there is a finite set $F \subset A \setminus B$ such that $B \cup F$ is an asymptotic basis of order h.

Proof. Assume that B is not an asymptotic basis of order h. Then $hB \not\sim N$. Since $d_L(hB) \leq 1 < hd_L(B)$, Kneser’s theorem implies that there exists an integer $g \geq 1$ such that $hB \sim hB^{(g)}$ and $d_L(hB) > hd_L(B) - (h - 1)/g$.

Let $B = B \cup \{c_1\}$. If B is an asymptotic basis of order h, let $F = \{c_1\}$. If B is not an asymptotic basis of order h, there exists an integer g_2 satisfying (*) and an integer $c_2 \in A$ such that $c_2 \not\equiv b \pmod{g_2}$ for all $b \in B$. Let $B_2 = B \cup \{c_2\}$.

Continuing inductively, we obtain a sequence of integers g_1, g_2, \ldots satisfying (*) and a sequence c_1, c_2, \ldots of elements of A such that $c_i \not\equiv b \pmod{g_i}$ for all $b \in B_{i-1} = B \cup \{c_1, c_2, \ldots, c_{i-1}\}$. Since there are only finitely many distinct congruence classes with respect to moduli bounded above by $(h - 2)/(h\delta)$, the inductive process must terminate in a finite number of steps, and we obtain a finite set $F = \{c_1, c_2, \ldots\} \subset A$ such that $B \cup F$ is an asymptotic basis of order h. This completes the proof.

Theorem 2. Let $h \geq 2$, and let A be an asymptotic basis of order h with $d_L(A) = 1/h + \delta$, where $\delta > 0$. Let $0 < \tau < \delta$. Then there is a set $W \subset A$ with
asymptotic density $d(W) = \tau$ such that $A \setminus W$ is an asymptotic basis of order h.

Proof. Let W' be any subset of A with $d(W') = \tau$. Let $B = A \setminus W'$. Then $d_L(B) = 1/h + \delta - \tau > 1/h$. By Theorem 1, there is a finite set $F \subseteq A \setminus B = W'$ such that $B \cup F = A \setminus (W' \setminus F)$ is an asymptotic basis of order h. Let $W = W' \setminus F$. Then $d(W) = d(W') = \tau$. This proves the theorem.

Theorem 3. Let A be a minimal asymptotic basis of order h. Then $d_L(A) \leq 1/h$.

Proof. If $d_L(A) > 1/h$, then by Theorem 2 there is a set $W \subseteq A$ with $d(W) > 0$ such that $A \setminus W$ is an asymptotic basis of order h, and this contradicts the minimality of A.

References

Provost and Vice President for Academic Affairs, Lehman College (CUNY), Bronx, New York 10468

Department of Mathematics, Baruch College (CUNY), New York, New York 10010

Current address of A. Sárköty:

Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary