A note on Jacobson rings and polynomial rings

Authors:
Miguel Ferrero and Michael M. Parmenter

Journal:
Proc. Amer. Math. Soc. **105** (1989), 281-286

MSC:
Primary 16A21

DOI:
https://doi.org/10.1090/S0002-9939-1989-0929416-7

MathSciNet review:
929416

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: As is well known, if is a ring in which every prime ideal is an intersection of primitive ideals, the same is true of . The purpose of this paper is to give a general theorem which shows that the above result remains true when many other classes of prime ideals are considered in place of primitive ideals.

**[1]**S. A. Amitsur,*Radicals of polynomial rings*, Canad. J. Math.**8**(1956), 355-361. MR**0078345 (17:1179c)****[2]**A. D. Bell,*When are all prime ideals in an Ore extension Goldiet*?, Comm. Algebra**13**(1985), 1743-62. MR**792560 (86j:16003)****[3]**M. Ferrero,*Prime ideals in polynomial rings*, preprint.**[4]**K. R. Goodearl,*Ring theory, nonsingular rings and modules*, Marcel Dekker, New York, 1976. MR**0429962 (55:2970)****[5]**I. N. Herstein,*Rings with involutions*, Univ. of Chicago Press, Chicago and London, 1976. MR**0442017 (56:406)****[6]**K. R. Pearson, W. Stephenson and J. F. Watters,*Skew polynomials and Jacobson rings*, Proc. London Math. Soc.**42**(1981), 559-576. MR**614734 (82j:16058)****[7]**J. F. Watters,*Polynomial extensions of Jacobson rings*, J. Algebra**36**(1975), 302-308. MR**0376765 (51:12940)****[8]**-,*The Brown-McCoy radical and Jacobson rings*, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.**24**(1976), 91-99. MR**0409539 (53:13293)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A21

Retrieve articles in all journals with MSC: 16A21

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0929416-7

Article copyright:
© Copyright 1989
American Mathematical Society