Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A remark on the normality of infinite products


Author: Keiko Chiba
Journal: Proc. Amer. Math. Soc. 105 (1989), 510-512
MSC: Primary 54D15; Secondary 54B10
MathSciNet review: 933513
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we shall prove the following: Suppose that all finite subproducts of a product space $ X = \prod\nolimits_{\beta < \lambda } {{X_\beta }} $ are normal. If $ X$ is $ \lambda $-paracompact, then $ X$ is normal. Here $ \lambda $ stands for an infinite cardinal number.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D15, 54B10

Retrieve articles in all journals with MSC: 54D15, 54B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0933513-X
Keywords: Normal, infinite product, $ \lambda $-paracompact
Article copyright: © Copyright 1989 American Mathematical Society