ON THE NONSIMPLICITY OF SOME CONVERGENCE CATEGORIES

E. LOWEN AND R. LOWEN

(Communicated by Dennis Burke)

Abstract. The category TOP of topological spaces is known to be Conv-simple in the sense that there exists a single object E in Top such that Top is the epireflective hull of $\{E\}$ in the category Conv of convergence spaces. Prtop, the category of pretopological spaces is also Conv-simple. We show that on the contrary the category Pstop of pseudo topological spaces and Conv itself are not Conv-simple. More specifically every epireflective subcategory of Conv which contains all Hausdorff c-embedded locally compact spaces is not Conv-simple.

For references on topological categories, reflective subcategories and reflective hulls we refer to [6, 8, 9, 10].

Let \mathcal{A} be a topological category.

All subcategories \mathcal{B} are assumed to be full and isomorphism-closed.

A subcategory \mathcal{B} of \mathcal{A} is epireflective in \mathcal{A} if it is closed with respect to the formation of products and subobjects in \mathcal{A}. In this context "Y is a subobject of X" means that there exists an embedding from X to Y. This notion coincides with the categorical notion of extremal subobject.

Every subcategory \mathcal{B} of \mathcal{A} is contained in a smallest epireflective subcategory, its epireflective hull, which is denoted by $R\mathcal{B}$. An object A of \mathcal{A} belongs to $R\mathcal{B}$ if and only if A is a subobject of a product of objects of \mathcal{B}. A subcategory \mathcal{B} of \mathcal{A} is called \mathcal{A}-simple if there exists a single object E of \mathcal{B} such that \mathcal{B} is the epireflective hull in \mathcal{A} of the class $\{E\}$, i.e., $\mathcal{B} = R\{E\}$.

Several examples of this situation are well known. If we take $\mathcal{A} = \text{Conv}$ then its bireflective subcategory Top is Conv-simple. Several subcategories of TOP are Conv-simple too, see for instance [4, 5, 6, 7, 9, 14]. Simplicity remains true if TOP is enlarged to the bireflective subcategory Prtop. This can be derived from results in [1].

In this paper we show that simplicity however does not extend to the larger bireflective subcategories Pstop or to Conv itself.
For an arbitrary convergence space Y we construct a Hausdorff, locally compact, c-embedded convergence space X such that for any source $(f_i : X \to Y)_{i \in I}$ the space X is not initial in Conv. It follows that every epireflective subcategory of Conv containing all Hausdorff, locally compact, c-embedded spaces, is not Conv-simple.

For notions about Conv we refer to the basic literature [2, 3, 11, 12, 13].

The following set theoretical property is fundamental for our results. We use the following notations. If X is a set and \mathcal{U} is an ultrafilter on X then

$$||\mathcal{U}|| = \min\{\text{card } U | U \in \mathcal{U}\}.$$

An ultrafilter \mathcal{U} on X is uniform if $||\mathcal{U}|| = \text{card } X$. If \mathcal{B} is a filterbase on X then the filter generated on X is denoted by $\text{stack}_X \mathcal{B}$. If B is a subset of X then the filter generated by $\{B\}$ is denoted by $\text{stack}_X B$. Such filters are called principal filters.

Proposition. If X and Y are sets, X is infinite and $\text{card } X > \text{card } Y$, if \mathcal{U} is a uniform ultrafilter on X and f is a function from X to Y then there exists a uniform ultrafilter \mathcal{W} on X different from \mathcal{U} such that

$$\text{stack}_X f(\mathcal{W}) = \text{stack}_X f(\mathcal{U}).$$

Proof. Let X, Y, \mathcal{U} and f be as in the assertion above. We can choose a set $U \in \mathcal{U}$ such that $\text{card } U = ||\mathcal{U}||$ and $\text{card } f(U) = ||\text{stack}_X f(\mathcal{U})||$. Let

$$\mathcal{P} = \{ f^{-1}(y) | y \in f(U) \}$$

and consider the following subcollections

$$\mathcal{P}_1 = \{ P \in \mathcal{P} | \text{card}(P \cap U) < \omega \}$$

$$\mathcal{P}_2 = \{ P \in \mathcal{P} | \text{card}(P \cap U) \geq \omega \}.$$

Notice that \mathcal{P}_2 is not empty. Indeed suppose that $\mathcal{P} = \mathcal{P}_1$. If $\text{card } \mathcal{P}_1 < \omega$ it follows that $\text{card } U$ is finite. If $\text{card } \mathcal{P}_1 \geq \omega$ then

$$\text{card } U = \max \left\{ \text{card } \mathcal{P}_1, \sup_{P \in \mathcal{P}_1} \text{card}(P \cap U) \right\}$$

$$= \text{card } \mathcal{P}_1 = \text{card } f(U).$$

Thus in both cases we have a contradiction. Now for every $P \in \mathcal{P}_2$ choose disjoint sets A_P and B_P such that $P \cap U = A_P \cup B_P$, and $\text{card } A_P = \text{card } B_P = \text{card}(P \cap U)$.

Further, let

$$A := \left(\bigcup_{P \in \mathcal{P}_1} P \cap U \right) \cup \left(\bigcup_{P \in \mathcal{P}_2} A_P \right)$$

and

$$B := \left(\bigcup_{P \in \mathcal{P}_1} P \cap U \right) \cup \left(\bigcup_{P \in \mathcal{P}_2} B_P \right).$$
ON THE NONSIMPlicity OF SOME CONVERGENCE CATEGORIES

Since $A \cup B = U$ one of the sets A or B belongs to \mathcal{U}. Suppose $B \in \mathcal{U}$. Let $g : B \to A$ be any function such that $g(x) = x$ if $x \in \bigcup_{P \in \mathcal{P}} P \cap U$ and such that g maps B_P bijectively onto A_P if $P \in \mathcal{P}_1$. Then clearly

$$g(B) \cap B = \bigcup_{P \in \mathcal{P}_1} P \cap U$$

and thus considering as before cases as to whether $\text{card} \mathcal{P}_1 < \omega$ or $\text{card} \mathcal{P}_1 \geq \omega$ one finds

$$\text{card}(g(B) \cap B) < \text{card} U$$

from which it follows that $g(B) \notin \mathcal{U}$. Put

$$\mathcal{W} = \text{stack}_x \{g(V \cap B) \mid V \in \mathcal{U}\}.$$

Then \mathcal{W} is a uniform ultrafilter on X, different from \mathcal{U}. On the other hand, by construction we have

$$\text{stack}_y f(\mathcal{W}) = \text{stack}_y f(\mathcal{U}).$$

Theorem. For every convergence space Y there exists a Hausdorff locally compact c-embedded convergence space X such that for any source $(f_i : X \to Y)_{i \in I}$ in Conv the space X is not initial.

Proof. Let Y be an arbitrary convergence space. Take an infinite set X with cardinality strictly larger than the cardinality of the underlying set of Y. Further we fix a point $a \in X$ and a uniform ultrafilter \mathcal{U} on X. We make X a pseudotopological space by defining the following convergent ultrafilters:

1. if $x \neq a$ then an ultrafilter \mathcal{W} converges to x if and only if $\mathcal{W} = \text{stack}_x \{x\},$

2. an ultrafilter \mathcal{W} converges to a if and only if $\mathcal{W} = \text{stack}_x \{a\}$ or \mathcal{W} is nonprincipal and $\mathcal{W} \neq \mathcal{U}$.

X clearly is Hausdorff and locally compact and since every convergent non-principal ultrafilter satisfies $\mathcal{W} = \mathcal{W} \cap \text{stack}_x \{a\}$ it follows that X is regular. The pretopological reflection of X is a compact Hausdorff topological space. It follows that the pretopological reflection of X coincides with the completely regular reflection. Hence X is also ω-regular, and thus c-embedded. Now let $(f_i : X \to Y)_{i \in Y}$ be any source in Conv. From the proposition it follows that \mathcal{U} converges to a in the initial structure of the source. Hence X is not initial. □

Corollary. Every epireflective subcategory of Conv containing all Hausdorff locally compact c-embedded spaces is not Conv-simple. □

In particular the previous result can be applied to conclude that the following epireflective subcategories of Conv are not Conv-simple: Conv itself, Pstop, the categories $T_1 \text{Conv}$, $T_1 \text{Pstop}$, HConv, HPstop, the categories of all c-embedded spaces, of all ω-regular spaces and the category of all regular spaces.
REFERENCES

DEPARTEMEN WISKUNDE, VRIJE UNIVERSITEIT BRUSSEL, PLEINLAAN 2, B-1050 BRUSSEL

WISKUNDIGE ANALYSE, UNIVERSITEIT ANTWERPEN, R.U.C.A., GROENENBOGGERLAAN 171, B-2020 ANTWERPEN