POWERS' BINARY SHIFTS
ON THE HYPERFINITE FACTOR OF TYPE II_1

MASATOSHI ENOMOTO AND YASUO WATATANI

(Communicated by Paul S. Muhly)

Dedicated to the koki of Professor Masahiro Nakamura

Abstract. A unit preserving \ast-endomorphism σ on the hyperfinite II_1 factor R is called a shift if $\bigcap_{n=0}^{\infty} \sigma^n(R) = \{ \lambda 1; \lambda \in \mathbb{C} \}$. A shift σ is called Powers’ binary shift if there is a self-adjoint unitary u such that $R = \{ \sigma^n(u); n \in \mathbb{N} \cup \{0\} \}$ and $\sigma^k(u^*u) = \pm u \sigma^k(u)$ for $k \in \mathbb{N} \cup \{0\}$. Let $q(\sigma)$ be the number $\min \{ k \in \mathbb{N}; \sigma^k(R)' \cap R \neq \mathbb{C}1 \}$. It is shown that the number $q(\sigma)$ is not the complete outer conjugacy invariant for Powers’ binary shifts.

1. INTRODUCTION

Powers [5] called an identity preserving \ast-endomorphism σ of the hyperfinite II_1-factor R such that $\bigcap_{k=0}^{\infty} \sigma^k(R) = \mathbb{C}1$ a shift and defined the index of σ by Jones index $[R: \sigma(R)]$ [4]. A shift σ is called a Powers’ binary shift if there is a self-adjoint unitary u_0 in R such that R is generated by $\{ \sigma^n(u_0); n = 0, 1, 2, \ldots \}$ and $\sigma^n(u_0)$ and $\sigma^m(u_0)$ pairwise commute or anticommute. Here $[R: \sigma(R)] = 2$. The unitary u_0 is called a σ-generator of R [5]. In the following we put $u_n = \sigma^n(u_0)$. Shifts α and β are called conjugate if there exists an automorphism θ on R such that $\beta = \theta \alpha \theta^{-1}$. And α and β are called outer conjugate if there exist a unitary $u \in R$ and an automorphism θ on R such that $\beta = \theta \alpha \theta^{-1} \circ A \text{Ad} u$ [5]. Powers [5] classified binary shifts completely up to conjugacy. Subsequently Price [6] characterized Powers’ binary shifts and surprisingly found a nonbinary shift on R of index two. Powers [5] also considered the outer conjugacy invariant $q(\sigma) = \min \{ k \in \mathbb{N}; \sigma^k(R)' \cap R \neq \mathbb{C}1 \}$ for binary shifts σ. Then Powers [5] raised the problem of whether the numbers $q(\sigma)$ are the complete outer conjugacy invariant or not for binary shifts σ. In this paper we shall give a negative answer of this Powers’ problem. In order to do this, we shall use the relative commutant algebras $\{ \sigma^k(R)' \cap R; k = 0, 1, 2, \ldots \}$.

Received by the editors November 2, 1987 and, in revised form, April 15, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 46L10; Secondary 46L99.
Key words and phrases. Binary shifts, hyperfinite factor of type II_1, outer conjugacy invariant, relative commutant algebras.
Obviously the set of the (isomorphism classes of) relative commutant algebras \(\{ \sigma^k(R)' \cap R ; k = 0, 1, 2, \ldots \} \) is an outer conjugacy invariant for binary shifts \(\sigma \).

2. Powers’ problem

Powers’ binary shifts are realized as follows [3]. Let \(G = \prod_{i=0}^{\infty} G_i \) be the restricted direct product of \(G_i \cong \mathbb{Z}_2 = \{0, 1\} \). A function \(a: \mathbb{Z} \rightarrow \{0, 1\} \) is called a signature sequence if \(a(0) = 0 \) and \(a(n) = a(-n) \) for any integer \(n \in \mathbb{Z} \) (cf. [5, 6, 7]). Define the canonical shift \(\sigma \) on the group \(G \) as follows: For \(x = (x(i)) \in G \), \((\sigma(x))(i) = x(i-1) \) for \(i \geq 1 \) and \((\sigma(x))(0) = 0 \). Let us define a multiplier \(m_a \in \mathbb{Z}^2(G, T) \) by

\[
M_a(x, y) = (-1)^{\sum_{n \neq 0} a(n)x(n)y(n)} \quad \text{for } x = (x(i)) \quad \text{and} \quad y = (y(j)) \in G.
\]

We shall define a unitary operator \(\lambda_m(x) \) on \(l^2(G) \) by

\[
(\lambda_m(x)\xi)(y) = M_a(x, x^{-1}y)\xi(x^{-1}y) \quad \text{for } x, y \in G \quad \text{and} \quad \xi \in l^2(G).
\]

Let \(R_m(G) \) be the von Neumann algebra generated by \(\{ \lambda_m(x) ; x \in G \} \). A signature sequence \(a \) is periodic if there exists an integer \(k \) such that \(a(k+n) = a(n) \) for \(n \in \mathbb{Z} \). Price [4, 5] showed that \(a \) is aperiodic (i.e., not periodic) if and only if \(R_m(G) \) is a factor (cf. also [1, 3]). In the following we shall always assume that the signature sequence \(a \) is aperiodic and identify the sequence \((a(i) ; i \in \mathbb{N}) \) with \((a(i) ; i \in \mathbb{Z}) \).

Since \(M_a(\sigma(x), \sigma(y)) = M_a(x, y) \), \(\sigma \) induces a shift \(\sigma \) on \(R_m(G) \) such that \(\sigma(\lambda_m(x)) = \lambda_m(\sigma(x)) \) for \(x \in G \), where we use the same notation \(\sigma \).

Put \(e_0 = (1, 0, 0, 0, \ldots) \in G \) and \(e_n = \sigma^n(e_0) \in G \). Similarly put \(u_0 = \lambda_m(e_0) \) and \(u_n = \sigma^n(u_0) \). Then \(u_nu_m = (-1)^{a(n-m)}u_mu_n \) and the hyperfinite factor of type II_1 \(R = R_m(G) \) is generated by \(\{ u_n ; n = 0, 1, 2, \ldots \} \). Thus the shift \(\sigma = \sigma_a \) on \(R_m(G) \) is a Powers’ binary shift with a signature sequence \(a \). In the following we shall realize the relative commutant algebras \(C_k(\sigma) = \sigma^k(R)' \cap R \) concretely.

Theorem 1. Let \(a \) be an aperiodic signature sequence. Suppose that the set \(\{ i \in \mathbb{N} ; a(i) \neq 0 \} \) is finite. Put \(d = \max\{ i \in \mathbb{N} ; a(i) \neq 0 \} \). Let \(\sigma \) be the Powers’ binary shift with a signature sequence \(a \). Let \(u_0 = \lambda_m(e_0) \) be the \(\sigma \)-generator. Put \(u_n = \sigma^n(u) \). Then \(C_k(\sigma) = \sigma^k(R)' \cap R = C1 \) if \(0 \leq k \leq d \) and \(C_k(\sigma) = \{ u_i ; 0 \leq i \leq k \} \) if \(d + 1 \leq k \).

Proof. It is clear that we have the inclusion \(C_k(\sigma) \supset C \) if \(0 \leq k \leq d \) and \(C_k(\sigma) \supset \{ u_i ; 0 \leq i \leq k \} \) if \(d + 1 \leq k \). We shall show the reverse inclusion. In the following we denote \(\lambda = \lambda_m \). Let \(x = \sum_g x_g \lambda_g \in R_m(G) \). If \(x \) is in \(C_k(\sigma) \), then

\[
\left(\sum_g x_g \lambda_g \right)_e \lambda_e = \lambda_e \left(\sum_g x_g \lambda_g \right)
\]

for \(n \geq k \).
Hence $\sum_g x_g m_a(g, e_n) \lambda_{g + e_n} = \sum_g x_g m_a(e_n, g) \lambda_{e_n + g}$. Thus $x_g (m_a(g, e_n) - m_a(e_n, g)) = 0$ for $n \geq k$. We may suppose that $x_g \neq 0$. Then $m_a(g, e_n) = m_a(e_n, g)$ for $n \geq k$. It is enough to show that $g = 0$ if $0 \leq k \leq d$ and $g(s) = 0$ for $s \geq k - d$ if $d + 1 \leq k$. Since

$$m_a(g, e_n) = (-1)^\sum_{i>j} a(i-j) g(i) e_n(j) = (-1)^\sum_{i>n} a(i-n) g(i)$$

and

$$m_a(e_n, g) = (-1)^\sum_{i>j} a(i-j) e_n(i) g(j) = (-1)^\sum_{n>j} a(n-j) g(j),$$

we have that $\sum_{i>n} a(i-n) g(i) = \sum_{n>j} a(n-j) g(j)$. By changing variables from i, j to p, we have that

$$\sum_{p=1}^{d} g(p + n) a(p) = \sum_{p=1}^{\min(n,d)} a(p) g(n - p) \quad \text{for } n \geq k.$$

Firstly consider the case that $0 < k < d$. We shall show that $g = 0$. Suppose that $g \neq 0$. Put $m = \max\{i \in \mathbb{N} \cup \{0\}; \ g(i) \neq 0\}$ and $n = m + d$. Then we have $n \geq k$. Therefore we can apply (#) in this case, so that we have

$$\sum_{p=1}^{d} g(p + m + d) a(p) = \sum_{p=1}^{d} g(m + d - p) a(p).$$

Hence $0 = g(m) a(d)$. Since $a(d) = 1$, we have that $g(m) = 0$. This is a contradiction. Thus we have $g = 0$. Next consider the case that $d + 1 \leq k$. Assume that $g(s) = 1$ for some $s \geq k - d$. Then we shall show the contradiction. Put $m = \max\{i \in \mathbb{N} \cup \{0\}; \ g(i) \neq 0\}$. By the assumption we have that $m \geq k - d$. Put $n = m + d$. Then we have that $n \geq k$. Since we can apply (#), we have that $\sum_{p=1}^{d} g(p + m + d) a(p) = \sum_{p=1}^{d} g(m + d - p) a(p)$. Therefore $0 = g(m) a(d)$. Since $a(d) = 1$, $g(m) = 0$. This is a contradiction. Thus $g(s) = 0$ for $k - d \leq s$.

Remark 2. In [1], Bures and Yin considered independently the relative commutant algebras for group shifts abstractly and they proved the following:

Let G be a discrete abelian group and m a multiplier of G. Let $R_m(G)$ be the von Neumann algebra as well as the above case $m = m_a$. If H is a subgroup of G, then $R_m(H)^' \cap R_m(G) = R_m(D_H)$, where D_H is the subgroup \{ $g \in G; m(g, h) = m(h, g)$ for any $h \in H$\} of G.

Powers [5] defined the following outer conjugacy invariant $q(\sigma)$ for shifts σ:

Put $q(\sigma) = \min\{k \in \mathbb{N}; \sigma^k(R)^' \cap R \neq C1\}.$

Remark 3. Take the signature sequence a such that the set \{ $i \in \mathbb{N}; a(i) \neq 0$\} is finite. Let degree a be the number $\max\{i \in \mathbb{N}; a(i) \neq 0\}$. Then Theorem 1 says that $q(\sigma) = (\text{degree } a) + 1$.

In [5], Powers raised the following problem (cf. also [7]).

Powers' problem. If α and β are binary shifts and $q(\alpha) = q(\beta)$ then are α and β outer conjugate?

We give a negative answer to the above problem.
Corollary 4. There exist binary shifts α and β such that $q(\alpha) = q(\beta)$ but α and β are not outer conjugate.

Proof. Let a and b be signature sequences such that $a(2) = a(3) = 1$ and $a(i) = 0$ ($i \neq 2, 3$), $b(1) = b(3) = 1$ and $b(j) = 0$ ($j \neq 1, 3$). Then $C_k(\sigma_a) \cong \mathbb{C}$ for $0 \leq k \leq 3$, $C_4(\sigma_a) = \{u_0\}'' \cong \mathbb{C}^2$ and $C_5(\sigma_a) = \{u_0, u_1\}'' \cong \mathbb{C}^2$. On the other hand $C_k(\sigma_b) \cong \mathbb{C}$ for $0 \leq k \leq 3$ and $C_4(\sigma_b) = \{u_0\}'' \cong \mathbb{C}^2$ but $C_5(\sigma_b) = \{u_0, u_1\}'' \cong M_2$. Thus $q(\sigma_a) = q(\sigma_b) = 4$ but σ_a and σ_b are not outer conjugate. \(\Box\)

Remark 5. Let a be a signature sequence such that the set $\{i \in \mathbb{N}; a(i) \neq 0\}$ is finite. Let order a be the number $\min\{n \in \mathbb{N}; a(n) \neq 0\}$. Then degree a and order a are outer conjugacy invariant for Powers’ binary shifts σ_a with degree $a < +\infty$. In fact $q(\sigma_a) = (\text{degree} a) + 1$ and $q(\sigma_a) = (\text{order} a) + 1 = \min\{k \in \mathbb{N}; \sigma^k(R) \cap R \text{ is not abelian}\}$. But orders and degrees are not complete outer conjugacy invariant. This is shown by the following example.

Example 6. Let a and b be signature sequences such that $a(1) = a(3) = 1$ and $a(i) = 0$ ($i \neq 1, 3$), $b(1) = b(2) = b(3) = 1$ and $b(j) = 0$ ($j \neq 1, 2, 3$). Then obviously degree $a = \text{degree} b$ and order $a = \text{order} b$. On the other hand, by Theorem 1, we have that $C_7(\sigma_a) \cong M_2 \otimes \mathbb{C}^4$ and $C_7(\sigma_b) \cong M_4$. Thus $C_7(\sigma_a)$ is not isomorphic to $C_7(\sigma_b)$. Hence σ_a and σ_b are not outer conjugate.

Remark 7. In [2], M. Choda also uses the numbers $\min\{k \in \mathbb{N}; \sigma^k(R) \cap R \neq \mathbb{C} \}$ and $\min\{k \in \mathbb{N}; \sigma^k(R) \cap R \text{ is not abelian}\}$ for projection shifts to show that there are at least a countable infinity of outer conjugacy classes among the projection shifts of R with the index $\lambda \in \{4 \cos^2(\pi/n); n = 3, 4, \ldots\} \cup \{4, \infty\}$.

ACKNOWLEDGMENT
We would like to thank the referee for several very helpful suggestions and valuable comments.

REFERENCES

College of Business Administration and Information Science, Koshien University, Takarazuka, Hyogo, 665, Japan
Department of Mathematics, Osaka Kyoiku University, Tennoji, 543, Japan