Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some Fourier-Stieltjes coefficients revisited


Author: Sylvester Reese
Journal: Proc. Amer. Math. Soc. 105 (1989), 384-386
MSC: Primary 42A38; Secondary 26A30
DOI: https://doi.org/10.1090/S0002-9939-1989-0938913-X
MathSciNet review: 938913
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new proof of a result of R. Salem: The Fourier-Stieltjes coefficients of certain strictly increasing singular functions do not vanish at infinity.


References [Enhancements On Off] (What's this?)

  • [1] P. Billingsley, Ergodic theory and information, John Wiley & Sons, New York, 1965. MR 0192027 (33:254)
  • [2] -, Probability and measure, John Wiley & Sons, New York, 1979. MR 534323 (80h:60001)
  • [3] E. Cesàro, Functions continues sans dérivée, Arch. Math. Phys. 10 (1906), 57-63.
  • [4] L. E. Dubins and L. J. Savage, Inequalities for stochastic processes, reprinted, Dover Publications, New York, 1976. (1st. eds., How to gamble if you must, McGraw-Hill Book Co., New York, 1965.)
  • [5] G. Faber, Über stetige Funktionen II, Math. Ann. 69 (1910), 372-443. MR 1511593
  • [6] G. H. Hardy and W. W. Rogosinski, Fourier series, 3rd ed., Cambridge University Press, New York, 1965. MR 0044660 (13:457b)
  • [7] E. Hellinger, Die Orthogonalinvarianten quadratischer Formen von unendlichvielen Variabelen, Dissertation, Göttingen, 1907.
  • [8] E. Hewitt and K. Stromberg, Real and abstract analysis, Springer-Verlag, New York, 1965. MR 0367121 (51:3363)
  • [9] S. Kakutani, On equivalence of infinite product measures, Ann. Math. 49 (1948), 214-224. MR 0023331 (9:340e)
  • [10] M. Laczkovich, Some remarks on Faber's singular function, Mat. Lapok 30 (1978/82), 69-79. MR 734607 (85a:26011)
  • [11] Z. Lomnicki et S. Ulam, Sur la théorie de la mesure dans les espaces combinatoires et son application au calcul des probabilités I. Variables indépendantes, Fund. Math. 23 (1934), 237-278.
  • [12] G. de Rham, Sur quelques courbes définies par des équations fonctionnnelles, Rend. Sem. Mat. Univ. Politec. Torino 16 (1957), 101-113. (Reprinted in G. de Rham, Oeuvres mathématiques, Univ. de Gen., Enseign. Math., 1981 pp. 716-728.
  • [13] F. Riesz et B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Akadémiai Kiadó, Budapest, 1952.
  • [14] R. Salem, On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (1943), 427-439. MR 0007929 (4:217b)
  • [15] -, Sets of uniqueness and sets of multiplicity, Trans. Amer. Math. Soc. 54 (1943), 218-28. MR 0008428 (5:3c)
  • [16] L. Takács, An increasing continuous singular function, Amer. Math. Monthly 85 (1978), 35-37. MR 481327 (80f:26005)
  • [17] A. Zygmund, Trigonometric series, 2 vols, Cambridge University Press, New York, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A38, 26A30

Retrieve articles in all journals with MSC: 42A38, 26A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0938913-X
Keywords: Fourier-Stieltjes coefficient, singular function
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society