Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The number of indecomposable sequences over an Artin algebra of finite type


Author: Stephen P. Corwin
Journal: Proc. Amer. Math. Soc. 105 (1989), 301-304
MSC: Primary 16A64; Secondary 16A35, 16A46
DOI: https://doi.org/10.1090/S0002-9939-1989-0948148-2
MathSciNet review: 948148
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Lambda $ be an artin algebra of finite representation type. For a finitely generated $ \Lambda $-module $ C$, there are only finitely many f.g. modules $ A$ such that $ 0 \to A \to B \to C \to 0$ is indecomposable as a short exact sequence.


References [Enhancements On Off] (What's this?)

  • [A] M. Auslander, Functors and morphisms determined by objects (R. Gordon, ed.), Lecture Notes Pure Appl. Math., no. 37, Marcel Dekker, New York, 1976. MR 0480688 (58:844)
  • [C] S. P. Corwin, Representation theory of the diagram $ {A_n}$ over the ring $ k[[x]]$, Dissertation, Virginia Tech, Blacksburg, Virginia.
  • [DR] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc., no. 173, 1976. MR 0447344 (56:5657)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A64, 16A35, 16A46

Retrieve articles in all journals with MSC: 16A64, 16A35, 16A46


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0948148-2
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society