Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ L\sp 2$-boundedness of spherical maximal operators with multidimensional parameter sets


Author: Young-Hwa Ha
Journal: Proc. Amer. Math. Soc. 105 (1989), 401-411
MSC: Primary 42B25; Secondary 47B38
DOI: https://doi.org/10.1090/S0002-9939-1989-0955460-X
MathSciNet review: 955460
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For $ s > 0$, let $ {M_s}f(x) = \int_{\vert y\vert = 1} {f(x - sy)d\sigma (y)} $ be the spherical mean operator on $ {R^n}$. For a certain class of surfaces $ S$ in $ R_ + ^{n + 1}$ with $ \dim S = n - 2$ or $ \dim S = n - 1$ with an additional condition, the maximal operator

$\displaystyle \mathcal{M}f(x) = \mathop {\sup }\limits_{(u,s) \in S} \vert{M_s}f(x - u)\vert$

is shown to be bounded on $ {L^2}({R^n})$. This extends (on $ {L^2}({R^n})$) the theorem of Stein [7], where $ S = \{ (0,s):s > 0\} $, and its generalizations to $ \dim S = 1$ in Greenleaf [2] and Sogge and Stein [6].

References [Enhancements On Off] (What's this?)

  • [1] R. Courant and D. Hilbert, Methods of mathematical physics, Interscience, New York, 1962.
  • [2] A Greenleaf, Principal curvature and harmonic analysis, Indiana Univ. Math. J. 30 (1981), 519-537. MR 620265 (84i:42030)
  • [3] F. John, Plane waves and spherical mean applied to partial differential equations, Interscience, New York, 1955. MR 0075429 (17:746d)
  • [4] A. Nagel, E. M. Stein and S. Wainger, Hilbert transform and maximal function related to variable curves, Proc. Sympos. Pure Math., vol. 35, Amer. Math. Soc., Providence, R. I., 1979, pp. 95-98. MR 545242 (81a:42027)
  • [5] R. Paley, A proof of a theorem on averages, Proc. London Math. Soc. 31 (1930), 289-300.
  • [6] C. Sogge and E. M. Stein, Averages of functions over hypersurfaces in $ {R^n}$, Invent. math. 82 (1985), 543-556. MR 811550 (87d:42030)
  • [7] E. M. Stein, Maximal functions: spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), 2174-2175. MR 0420116 (54:8133a)
  • [8] -, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 0290095 (44:7280)
  • [9] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295. MR 508453 (80k:42023)
  • [10] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N. J., 1971. MR 0304972 (46:4102)
  • [11] S. Wainger, Averages and singular integral over lower dimensional sets, Beijing Lectures and Harmonic Analysis, edited by E. M. Stein, Princeton Univ. Press, Princeton, N. J., 1986, pp. 357-421. MR 864376 (89a:42026)
  • [12] A. Zygmund, Trigonometric series, 2nd ed. (in two vols.), Cambridge Univ. Press, Cambridge, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25, 47B38

Retrieve articles in all journals with MSC: 42B25, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0955460-X
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society