Sums and Products of Hilbert Spaces

Jesús M. F. Castillo

(Communicated by William J. Davis)

Abstract. Let H be a Hilbert space. We prove that the locally convex sum $\bigoplus_I H$ is a subspace of the product H^I if and only if I is countable, H is infinite dimensional, and $\text{card } J \geq 2^{\aleph_0}$.

Notations. For the general terminology on locally convex spaces we refer to [1, 2].

If E is a locally convex space, $U(E)$ will denote a fundamental system of absolutely convex closed neighborhoods of 0. If p_U is the associated semi-norm of $U \in U(E)$, we note \hat{E}_U for the completion of the normed space $(E/\text{Ker } p_U, \|\cdot\|_U)$, where $\|\phi_U(x)\|_U = p_U(x)$, ϕ_U being the quotient map. The spaces \hat{E}_U will be referred as the associated Banach spaces. If $U, V \in U(E)$, $V \subseteq U$, the canonical linking map \hat{T}_{VU} is the extension to the completions of the operator $T_{VU} \in L(E_U, E_V)$ defined by $T_{VU} \phi_U x = \phi_U x$.

Let T be an operator acting between the Banach spaces $T : X \rightarrow Y$. Let Z be a Banach space. By a subfactorization of T through Z we mean two operators $A : X \rightarrow Z$ and $B : \overline{\text{Im } A} \rightarrow Y$ such that $T = BA$. Note that B need not be defined on all of Z, but only on the closure of the range of A in Z. When B is defined on the whole Z then we have a factorization of T through Z.

The spaces $l_p(I)$, $0 < p \leq +\infty$, are defined to be the Banach (p-Banach if $0 < p < 1$) spaces

$$l_p(I) = \{(x_i)_{i \in I} \in K^I : \|\sum_{i \in I} |x_i|^p\|_p\}^{1/p} \quad < +\infty$$
if $p < +\infty$, and

$$l_{\infty}(I) = \{(x_i)_{i \in I} \in K^I : \|x_i\|_\infty = \sup_{i \in I} |x_i| < +\infty\}$$

if $p = +\infty$.

We write

$$l^+_\infty(I) = \{x \in l_\infty(I) : x_i > 0 \ \forall i \in I\}$$

and recall the well-known fact that any Hilbert space is isometric with some $l_2(I)$.

Let X be a Banach space, we will also consider the vector valued sequence spaces

$$l_p(X) = \{(x_n) \in X^N : (\|x_n\|) \in l_p\}, \quad 1 \leq p < +\infty$$

and

$$c_0(X) = \{(x_n) \in X^N : (\|x_n\|) \in c_0\}$$

which in fact are Banach spaces.

Main results

Theorem. Let H be an infinite-dimensional Hilbert space. Then the locally convex sum $\bigoplus_I H$ is a subspace of some product $\prod_I H$ if and only if I is countable and $\operatorname{card} J \geq 2^{\aleph_0}$.

Obviously H needs to be infinite-dimensional since \varnothing, cannot be a subspace of any product K^I. On the other hand $\operatorname{card} J \geq 2^{\aleph_0}$ is required since $\bigoplus_N H$ is not metrizable.

Proposition 1. $\bigoplus_N l_2$ is a subspace of $\prod_I l_2, \quad \operatorname{card} J \geq 2^{\aleph_0}$.

Proof. Since the locally convex sum topology coincides with the so-called box-topology (see [1]) on countable sums, a fundamental system of neighborhoods of 0 is given by the sets: $U(z) = \prod_N z_n B \cap \bigoplus_N l_2$, where B is the unit ball of l_2, and $z \in c_0$. We may suppose $z_n \neq 0$ for all $n \neq N$. Its associated seminorm is: $p_z((x_n)) = \sup_n z_n^{-1} \|x_n\|_2$, and the associated Banach space is clearly seen to be the completion of $\bigoplus_N l_2$ endowed with the norm p_z, that is:

$$\left\{(x_n) \in l_2^N : \sup_n z_n^{-1} \|x_n\|_2 \to 0\right\}.$$

This space is isometric with $c_0(l_2)$. Under this isometry, if $k \in c_0$ and $0 < k_n \leq z_n$, then the linking map between the associated Banach spaces to p_k and p_z is precisely the “diagonal” operator $D_\sigma : c_0(l_2) \to c_0(l_2), \quad D_\sigma((x_n)) = (\sigma_n x_n)$, where $\sigma_n = z_n^{-1} k_n^{-1}$.

If we choose k such that σ belongs to l_2, then D_σ factorizes through $l_2(l_2)$:

$$\begin{array}{cccc}
 c_0(l_2) & \xrightarrow{D_\sigma} & c_0(l_2) \\
 \downarrow & & \uparrow \text{inclusion} \\
 l_2(l_2) & & \\
\end{array}$$
\[\|D_\sigma x\|_{l^2(I)} = \left(\sum \|\sigma_n x_n\|_2^2\right)^{1/2} = \left(\sum |\sigma_n|^2 \|x_n\|^2_2\right)^{1/2} \leq \sup_n \|x_n\|_2 \left(\sum |\sigma_n|^2\right)^{1/2} = \|x\|_{c_0(l^2)} \|\sigma\|_2. \]

The continuity of the inclusion is obvious. But the space \(l^2(I^2) \) is isometric with \(l_2 \). Thus, the space \(\bigoplus_N l^2 \), as a projective limit of \(l^2 \) is a closed subspace of the topological product \(\prod_I l^2 \) [2, 19.10.3].

Remark. Since \(l^p(I^p) \) is isometric with \(l^p \), \(1 \leq p < +\infty \), the preceding proof serves for the spaces \(l^p \), and with minor modifications for the nonseparable spaces \(l^p(I) \), \(1 \leq p < +\infty \). Therefore it covers the situation for all Hilbert spaces.

Proposition 2. Let \(I \) be uncountable. Then \(\bigoplus_I l^2 \) is not a subspace of any product \(\prod_I l^2 \).

Proof. The latter space has separable associated Banach spaces while the former does not. \(\Box \)

Proposition 3. Let \(H \) be a Hilbert space, and \(I \) an uncountable set. Then \(\bigoplus_I H \) is not a subspace of any product of copies of \(H \).

Proof. We may write \(H = l^2(I) \) with \(I \) uncountable, by the remarks previous to Proposition 1, and Proposition 2. Let \(I \) be uncountable with \(d = \text{card} I \).

Step 1. Let \(A \in L(l^2(I), l^1(I)) \) represented by a matrix \((a_{i,j})_{(i,j) \in I \times I} \) in the form:

\[A(x_j) = (y_i) \quad \text{with} \quad y_i = \sum_{j \in I} a_{i,j} x_j. \]

Suppose that \(A \) has (a) a row of zeros or (b) a column of zeros. Then \(A \) cannot be part of a factorization of a diagonal operator \(D_\sigma : l_1(I) \to l_1(I), \sigma \in l^{+}\infty(I) \) through \(l^2(I) \). In case (a) since then all the vectors in \(\text{IM} A \) would have some coordinate zero, and \(\text{IM} AB \neq \text{IM} D_\sigma \). In case (b) it is \(A' : l^{+}\infty(I) \to l^2(I) \) which has a row of zeros and cannot be injective; since \(D_{\sigma^{-1}} \) is injective, the factorization \(D_{\sigma^{-1}} = D_{\sigma}' = B'A' \) is impossible, and thus \(D_{\sigma} = AB \) is impossible too.

From all this it follows that a nonzero element must exist in each row and in each column of \(A \). Therefore the set \(\{(i,j) \in I \times I : a_{i,j} \neq 0\} \) is uncountable, and we may assume \(a_{i,j} > 0 \) for uncountable many pairs \((i,j) \). Thus an \(\varepsilon > 0 \) must exist such that \(a_{i,j} \geq \varepsilon \) for an uncountable set \(Z \subset I \times I \). Moreover these indexes of \(Z \) need to be scattered through infinitely many rows and columns of \(I \times I \); because if we suppose that they are "concentrated" in, let us say, a single column, then those vectors of \(l^2(I) \) with the corresponding index zero have zero as the image by \(A \). Since \(B \) can be considered surjective (see Step 2), \(A \) would not be a part of a factorization of \(D_\sigma \). If they are "concentrated" on a row we obtain the same result by transposition. Therefore we can choose a countable set \(Z_0 = \{(i_n, j_n) \in Z, n \in N\} \) such that \(i_n \neq i_m \) and \(j_n \neq j_m \).
whenever \(n \neq m \). Choose then an element \((z_j) \in l^2(I)\setminus l^1(I)\) with \(z_j \geq 0 \ \forall j \) and \(z_j \neq 0 \) if some couple \((i,j) \in Z_0\). If \(Az = y \), then we find that for each pair \((i,j) \in Z_0\):

\[
y_i = \sum_{k \in I} a_{ik} z_k \geq \varepsilon z_j
\]

whence

\[
\sum_{i \in I} |y_i| \geq \varepsilon \sum_{j \in I} |z_j| = +\infty
\]

and \(A \) cannot be an operator from \(l^2(I) \) into \(l^1(I) \). In this way we have essentially proved that:

Step 2. The diagonal operator \(D_\sigma : l^1(I) \to l^1(I) \), \(\sigma \in l^1(I) \), cannot be subfactorized through \(l^2(I) \): the above manipulations settle the case of factorization. For subfactorizations we use orthogonal projection onto \(IM \) to obtain a factorization through a Hilbert space. If this is nonseparable the calculations of step 1 apply. If it is \(l^2 \) then \(D_\sigma = AB \), \(B \in L(l^1(I), l^2) \) and \(A \in L(l^1(l^1), l^2) \) is clearly false since the image of \(D_\sigma \) cannot be contained in any \(l^1(N) = N \) a countable subset of \(I \).

Step 3. It is not hard to check that \(\varphi_d \) has a fundamental system of neighborhoods of 0 with associated Banach spaces isometric with \(l^1(I) \). Under this isometry the linking maps are the diagonal operators \(D_\sigma \), \(\sigma \in l^1(I) \).

Step 4. Let us assume that \(\varphi_d \) is a subspace of some product \(l^2(I)^J \). There is a fundamental system of neighborhoods of 0 in \(l^2(I)^J \), \(\mathcal{U} \), with associated Banach spaces isometric with \(l^2(I) \). Thus an embedding of \(\varphi_d \) into \(l^2(I)^J \) would imply for \(U \in \mathcal{U} \) the subfactorization

\[
l^1(I) \to (\varphi_d)_{\mathcal{U} \cap \varphi_d} \to l^1(I)
\]

of \(D_\sigma \), which we know is not possible.

Step 5. We complete the proof of our Proposition 3. Since the embedding of \(\varphi_d \) into \(H^J \) is not possible when \(d \) is uncountable, the embedding of \(\bigoplus I H \) into \(H^J \) is impossible too. \(\square \)

Remark. The result in Step 4 also holds when \(\varphi_d \) and \(l^2(J) \) with different index sets are considered. It is obviously true when \(\text{card} J < d \) and, reasoning as in Step 2, when \(\text{card} J > d \).

Remark. For general operators \(T : l^p(I) \to l^q(J) \), \(I, J \) uncountable and \(p > q \) we can obtain (compare with the final part of Step 1):

1. \(\forall j \in I \ \text{card}\{i \in I : a_{ij} \neq 0\} \leq \aleph_0 \)
2. \(\forall i \in I \ \text{card}\{j \in I : a_{ij} \neq 0\} \leq \aleph_0 \) if \(p > 1 \).
From this it follows that if \(\text{card}\{(i,j) \in I \times I : a_{ij} \neq 0\} > \aleph_0 \) then these indexes cannot be "concentrated" in a countable number of rows or columns. We could then proceed as in Step 1 to obtain a contradiction. Therefore:

(*) \[\text{card}\{(i,j) \in I \times I : a_{ij} \neq 0\} \leq \aleph_0 \]

and then IM \(T \subset l_q(N) \). We have

Lemma. Let \(I, J \) be uncountable sets, \(p > q \leq 1 \) and \(T : l_p(I) \to l_q(J) \) a continuous operator. Then IM \(T \subset l_q(N) \).

In the advance of this paper [4] the above lemma was incorrectly stated due to the omission of the hypothesis \(p > 1 \). The next counterexample shows that in that way it is no longer true: consider a partition \(I = \bigcup_{n=1}^{\infty} I_n \), with \(I_n \) uncountable for all \(n \). Take \(I_0 \) a countable subset of \(I \), and define

\[a_{ij} = \begin{cases} i^{-4} & \text{when } i \in I_0 \text{ and } j \in I, \\ 0 & \text{otherwise}. \end{cases} \]

This matrix defines an operator from \(l_1(I) \) to \(l_{1/2}(I) \) for which (*) does not hold.

References