Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The Albert quadratic form for an algebra of degree four


Authors: Pasquale Mammone and Daniel B. Shapiro
Journal: Proc. Amer. Math. Soc. 105 (1989), 525-530
MSC: Primary 16A40; Secondary 11E04, 11E88, 12E15
MathSciNet review: 931742
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ K$ is a field and the $ K$-algebra $ A$ is expressed as a tensor product of two quaternion algebras $ A \cong {H_1} \otimes {H_2}$. Let $ {N_i}$ be the norm form on $ {H_i}$ and define the "Albert form" $ {\alpha _A}$ to be the $ 6$-dimensional quadratic form determined by $ \alpha_{A} \bot \left\langle {1, - 1} \right\rangle \cong {N_1} \bot - {N_2}$. In [Adv. in Math. 48 (1983), 149-165] Jacobson proved: (1) any two Albert forms for $ A$ are similar; (2) if $ A$ and $ B$ are algebras of this type, then $ A \cong B$ if and only if $ {\alpha _A}$ and $ {\alpha _B}$ are similar.

The authors prove this result using quadratic forms and Clifford algebras, avoiding the application of Jacobson's theory of Jordan norms.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A40, 11E04, 11E88, 12E15

Retrieve articles in all journals with MSC: 16A40, 11E04, 11E88, 12E15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1989-0931742-2
PII: S 0002-9939(1989)0931742-2
Article copyright: © Copyright 1989 American Mathematical Society