Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The conjugate property for Diophantine approximation of continued fractions


Author: Jing Cheng Tong
Journal: Proc. Amer. Math. Soc. 105 (1989), 535-539
MSC: Primary 11J04; Secondary 11J70, 11J72
DOI: https://doi.org/10.1090/S0002-9939-1989-0937852-8
MathSciNet review: 937852
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \xi $ be an irrational number with simple continued fraction expansion $ \xi = [{a_0};{a_1}, \ldots ,{a_i}, \ldots ]$, and $ {p_i}/{q_i}$ be its $ i$th convergent. In this paper we first prove the duality of some inequalities, and then prove the following conjugate properties for symmetric and asymmetric Diophantine approximations.

(i) Among any three consecutive convergents $ {p_i}/{q_i}(i = n - 1,n,n + 1)$, at least one satisfies

$\displaystyle \xi - {p_i}/{q_i}\vert < 1/\left( {\sqrt {a_{^{n + 1}}^2 + 4q_i^2} } \right),$

and at least one does not satisfy this inequality.

(ii) Let $ \tau $ be a positive real number. Among any four consecutive convergents $ {p_i}/{q_i}(i = n - 1,n,n + 1,n + 2)$, at least one satisfies

$\displaystyle - 1/\left( {\sqrt {c_{^n}^2 + 4\tau q_i^2} } \right) < \xi - {p_i}/{q_i} < \tau /\left( {\sqrt {c_n^2 + 4\tau q_i^2} } \right),$

and at least one does not satisfy this inequality, where $ {c_n} = {a_{n + 1}}$ if $ n$ is odd, $ {c_n} = {a_{n + 2}}$ if $ n$ is even.

References [Enhancements On Off] (What's this?)

  • [1] F. Bagemihl and J. R. McLaughlin, Generalization of some classical theorems concerning triples of consecutive convergents to simple continued fractions, J. Reine Angew. Math. 221 (1966), 146-149. MR 0183999 (32:1475)
  • [2] É. Borel, Contribution à l'analyse arithmétique du continu, J. Math. Pures Appl. (9) (1903), 329-375.
  • [3] W. J. LeVeque, On asymmetric approximations, Michigan Math. J. 2 (1953), 1-6. MR 0062784 (16:18b)
  • [4] M. Müller, Über die Approximation reeler Zahlen durch die Näherungsbruche ihres regelmässigen Kettenbruches, Arch. Math. 6 (1955), 253-258. MR 0069850 (16:1090e)
  • [5] C. D. Olds, Note on an asymmetric Diophantine approximation, Bull. Amer. Math. Soc. 52 (1946), 261-263. MR 0017758 (8:196e)
  • [6] K. C. Prasad and M. Lari, A note on a theorem of Perron, Proc. Amer. Math. Soc. 97 (1986), 19-20. MR 831378 (87h:11065)
  • [7] B. Segre, Lattice points in infinite domains and asymmetric Diophantine approximation, Duke Math. J. 12 (1945), 337-365. MR 0012096 (6:258a)
  • [8] P. Szüsz, On a theorem of Segre, Acta Arith. 23 (1973), 371-377. MR 0344202 (49:8942)
  • [9] J. Tong, The conjugate property of the Borel theorem on Diophantine approximation, Math. Z. 184 (1983), 151-153. MR 716268 (85m:11039)
  • [10] -, A theorem on approximation of irrational numbers by simple continued fractions, Proc. Edinburgh Math. Soc. 31 (1988), 197-204. MR 989752 (90e:11101)
  • [11] -, Segre's theorem on asymmetric Diophantine approximation, J. Number Theory 28 (1988), 116-118. MR 925611 (89h:11033)
  • [12] -, Symmetric and asymmetric Diophantine approximations of continued fractions, Bull. Soc. Math. France, (to appear). MR 1021563 (90k:11086)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11J04, 11J70, 11J72

Retrieve articles in all journals with MSC: 11J04, 11J70, 11J72


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0937852-8
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society