Remark on Witten's modular forms

Author:
Jean-Luc Brylinski

Journal:
Proc. Amer. Math. Soc. **105** (1989), 773-775

MSC:
Primary 57R20; Secondary 11F11

MathSciNet review:
942631

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a simple proof of the modular invariance of a power series which Witten [4] attaches to an even-dimensional closed manifold whose first Pontryagin class is torsion. The proof uses only the functional equation satisfied by classical theta functions.

**[1]**K. Chandrasekharan,*Elliptic functions*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. MR**808396****[2]**Peter S. Landweber,*Elliptic cohomology and modular forms*, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 55–68. MR**970281**, 10.1007/BFb0078038**[3]**A. N. Schellekens and N. P. Warner,*Anomalies, characters and strings*, Nuclear Phys. B**287**(1987), no. 2, 317–361. MR**885644**, 10.1016/0550-3213(87)90108-8**[4]**Edward Witten,*The index of the Dirac operator in loop space*, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 161–181. MR**970288**, 10.1007/BFb0078045**[5]**Edward Witten,*Elliptic genera and quantum field theory*, Comm. Math. Phys.**109**(1987), no. 4, 525–536. MR**885560****[6]**Don Zagier,*Note on the Landweber-Stong elliptic genus*, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 216–224. MR**970290**, 10.1007/BFb0078047

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57R20,
11F11

Retrieve articles in all journals with MSC: 57R20, 11F11

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1989-0942631-1

Keywords:
Spin manifolds,
modular forms,
theta function

Article copyright:
© Copyright 1989
American Mathematical Society