Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On weighted norm inequalities for positive linear operators


Authors: R. Kerman and E. Sawyer
Journal: Proc. Amer. Math. Soc. 105 (1989), 589-593
MSC: Primary 26D15; Secondary 26A33, 44A10, 47B38
DOI: https://doi.org/10.1090/S0002-9939-1989-0947314-X
MathSciNet review: 947314
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ T$ be a positive linear operator defined for nonnegative functions on a $ \sigma $-finite measure space $ \left( {X,m,\mu } \right)$. Given $ 1 < p < \infty $ and a nonnegative weight function $ w$ on $ X$, it is shown that there exists a nonnegative weight function $ v$, finite $ \mu $-almost everywhere on $ X$, such that (1)

$\displaystyle \int_X {{{\left( {Tf} \right)}^p}wd\mu \leq \int _X {{f^p}vd\mu } } ,\quad {\text{for all }}f\leq 0$

, if and only if there exists $ \phi $ positive $ \mu $-almost everywhere on $ X$ with (2)

$\displaystyle \int\limits_X {{{\left( {T\phi } \right)}^p}wd\mu < \infty .} $

In case (2) holds, we may take $ v = {\phi ^{1 - p}}{T^*}\left[ {{{\left( {T\phi } \right)}^{p - 1}}w} \right]$ in (1). This partially answers a question of B. Muckenhoupt in [5]. Applications to some specific operators are also given.

References [Enhancements On Off] (What's this?)

  • [1] K. F. Andersen, Weighted inequalities for fractional integrals, In Fractional Calculus, Res. Notes Math. 138, Pitman, 1985, 12-25. MR 860083 (88a:42025)
  • [2] K. F. Andersen and E. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators, to appear in Trans. A.M.S. MR 930071 (89h:26006)
  • [3] L. Carleson and P. Jones, Weighted norm inequalities and a theorem of Koosis, Mittag-Leffler Inst. Rep. (1981).
  • [4] A. Gatto and C. Gutierrez, On weighted norm inequalities for the maximal function, Studia Math. 76 (1983), 59-62. MR 728196 (85f:42031)
  • [5] B. Muckenhoupt, Weighted norm inequalities for classical operators, Proc. Symp. Pure Math. 35 (1) (1979), 69-83. MR 545240 (80i:42015)
  • [6] E. Sawyer, Two weight norm inequalities for certain maximal and integral operators, Lecture Notes in Math. 908 (1982), 102-127. MR 654182 (83k:42020b)
  • [7] W. S. Young, Weighted norm inequalities for the Hardy-Littlewood maximal function, Proc. A.M.S. 85 (1982), 24-46. MR 647890 (84h:42033)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26D15, 26A33, 44A10, 47B38

Retrieve articles in all journals with MSC: 26D15, 26A33, 44A10, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0947314-X
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society