Surjective isometries of weighted Bergman spaces
Author:
Clinton J. Kolaski
Journal:
Proc. Amer. Math. Soc. 105 (1989), 652-657
MSC:
Primary 46E15; Secondary 30H05, 32F05, 32H10, 46J15
DOI:
https://doi.org/10.1090/S0002-9939-1989-0953008-7
MathSciNet review:
953008
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a bounded, simply connected domain in
, let
be positive and continuo on
, and let
denote the weighted Bergman space over
. We characterize those automorphisms
of
such that the map
is a surjective isometry of
, including an explicit description of
.
- [1] C. Horowitz, Zeros of functions in the Bergman spaces, Duke Math. J. 41 (1974), 693-710. MR 0357747 (50:10215)
- [2] C. Kolaski, Isometries of Bergman spaces over bounded Runge domains, Canad. J. Math. 33 (1981), 1157-1164. MR 638372 (83b:32028)
- [3] -, Isometries of Weighted Bergman spaces, Canad. J. Math. 34 No. 4 (1982), 910-915. MR 672684 (84a:46054)
- [4] D. H. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 34, No. 2 (1985), 319-336. MR 783918 (86e:46020)
- [5]
W. Rudin, Function theory in the unit ball of
, Springer-Verlag, New York, 1980. MR 601594 (82i:32002)
- [6] A. Selberg, Automorphic functions and integral operators, Seminars on Analytic Functions, II, Institute for Advanced Study, Princeton, N.J., 1957, pp. 152-161.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E15, 30H05, 32F05, 32H10, 46J15
Retrieve articles in all journals with MSC: 46E15, 30H05, 32F05, 32H10, 46J15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1989-0953008-7
Keywords:
Bergman space,
isometry,
automorphism
Article copyright:
© Copyright 1989
American Mathematical Society