Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Elliptic curves of bounded degree and height


Author: Joseph H. Silverman
Journal: Proc. Amer. Math. Soc. 105 (1989), 540-545
MSC: Primary 11G05; Secondary 14G25, 14K07
MathSciNet review: 953747
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that there are only finitely many elliptic curves of bounded degree and height, provided that one takes a naive height defined in terms of minimal Weierstrass equations. We show that the corresponding statement is false if instead one uses the Faltings-Parshin modular height.


References [Enhancements On Off] (What's this?)

  • [1] Gerd Faltings, Finiteness theorems for abelian varieties over number fields, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 9–27. Translated from the German original [Invent. Math. 73 (1983), no. 3, 349–366; ibid. 75 (1984), no. 2, 381; MR 85g:11026ab] by Edward Shipz. MR 861971
  • [2] Helmut Hasse, Number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 229, Springer-Verlag, Berlin-New York, 1980. Translated from the third German edition and with a preface by Horst Günter Zimmer. MR 562104
  • [3] Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605
  • [4] J. Manin and Y. Zarhin, Heights on families of abelian varieties, Math. USSR-Sb. 18 (1972), 169-179.
  • [5] D. G. Northcott, An inequality in the theory of arithmetic on algebraic varieties, Proc. Cambridge Philos. Soc. 45 (1949), 502–509. MR 0033094
  • [6] Joseph H. Silverman, Integer points and the rank of Thue elliptic curves, Invent. Math. 66 (1982), no. 3, 395–404. MR 662599, 10.1007/BF01389220
  • [7] Joseph H. Silverman, Lower bounds for height functions, Duke Math. J. 51 (1984), no. 2, 395–403. MR 747871, 10.1215/S0012-7094-84-05118-4
  • [8] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210
  • [9] Joseph H. Silverman, Heights and elliptic curves, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 253–265. MR 861979

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11G05, 14G25, 14K07

Retrieve articles in all journals with MSC: 11G05, 14G25, 14K07


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1989-0953747-8
Article copyright: © Copyright 1989 American Mathematical Society