HYPO-ANALYTIC PSEUDODIFFERENTIAL OPERATORS

S. BERHANU

(Communicated by Walter D. Littman)

Abstract. Let Ω be a hypo-analytic manifold of dimension m equipped with a hypo-analytic structure whose structure bundle T' has dimension m. This paper introduces hypo-analytic pseudodifferential operators and it is shown that such operators preserve the hypo-analyticity of a distribution.

1. Introduction

The main concepts relating to hypo-analyticity were introduced by Baouendi, Chang, and Treves in [1], Chapter 1. We shall summarize some of these in this section.

Suppose Ω is a C^∞ manifold of dimension $m+n$. A hypo-analytic structure on Ω is the data of an open covering (U_α) of Ω and for index α, of m C^∞ functions $Z^1_\alpha, \ldots, Z^m_\alpha$ satisfying the following two conditions:

(i) $dZ^1_\alpha, \ldots, dZ^m_\alpha$ are linearly independent at each point of U_α;
(ii) if $U_\alpha \cap U_\beta \neq \emptyset$, there are open neighborhoods \mathcal{O}_α of $Z_\alpha(U_\alpha \cup U_\beta)$ and \mathcal{O}_β of $Z_\beta(U_\alpha \cap U_\beta)$ and a holomorphic map F^α_β of \mathcal{O}_α onto \mathcal{O}_β, such that

$$Z_\beta = F^\alpha_\beta \circ Z_\alpha \quad \text{on} \quad U_\alpha \cap U_\beta.$$

When the Z^I are real-valued and $n = 0$, such a structure specializes to a real analytic structure. A distribution h defined in an open neighborhood of a point p_0 of Ω is hypo-analytic at p_0 if there is a hypo-analytic local chart (U_α, Z_α) whose domain contains p_0 and a holomorphic function \tilde{h}_α defined on an open neighborhood of $Z_\alpha(p_0)$ in C^m such that $h = \tilde{h}_\alpha \circ Z$ in a neighborhood of p_0.

By a hypo-analytic local chart we mean an $(m+1)$-tuple (U, Z^1, \ldots, Z^m) [abbreviated (U, Z)] consisting of an open subset U of Ω and of m hypo-analytic functions Z^1, \ldots, Z^m whose differentials are linearly independent at every point of U.

Received by the editors November 2, 1987 and, in revised form, August 17, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 35A20; Secondary 35S99.
In general, the mapping \(Z = (Z^1, \ldots, Z^m): U \to \mathbb{C}^m \) is not a local embedding. However, when \(\dim \Omega = m \), this mapping is a local diffeomorphism. Throughout this paper we will assume that the dimension of \(\Omega \) is \(m \).

2. Preliminaries

We will reason in a hypo-analytic local chart \((U, Z)\) in \(\Omega \). We shall assume that the open set \(U \) has been contracted sufficiently so that the mapping \(Z = (Z^1, \ldots, Z^m): U \to \mathbb{C}^m \) is a diffeomorphism of \(U \) onto \(Z(U) \) and that \(U \) is the domain of local coordinates \(x_j \) \((1 \leq j \leq m)\) all vanishing at a "central point" which will be denoted by \(0 \). We will suppose \(Z(0) = 0 \) and denote by \(Z_x \) the Jacobian matrix of the \(Z^j \) with respect to the \(x^k \). Substitution of \(Z_x(0)^{-1}Z(x) \) for \(Z(x) \) will allow us to assume that \(Z_x(0) = \) the identity matrix. This will permit us to take the real part of the \(Z^j \) \((j = 1, \ldots, m)\) as coordinates and write in these new coordinates

\[
Z^j = x^j + \sqrt{1} \Phi^j(x), \quad j = 1, \ldots, m,
\]

where \(\Phi = (\Phi^1, \ldots, \Phi^m) \) is real-valued whose differential at the origin is 0. Moreover, the functions \(Z^j \) are selected so that all the derivatives of order two of the \(\Phi^j \) vanish at the origin. Indeed if this is not already so it suffices to replace each \(Z^j \) by

\[
Z^j - \sqrt{-1}/2 \sum \sum \frac{\partial^2 \Phi^j}{\partial x^k \partial x^l}(0)Z^kZ^l.
\]

We will use \(Z^*_x \) to denote the transpose of the inverse of the matrix \(Z_x \).

Since the first and second derivatives of all the \(\Phi^j \) are zero at the origin, after contracting \(U \) if necessary, we can find a number \(c, 0 < c < 1 \) such that for all \(x, y \in U \) and for all \(\xi \in \mathbb{R}^m \),

\[
|\text{Im} Z^*_x(x)\xi| \leq c|\text{Re} Z^*_x(x)\xi|
\]

and

\[
(2.1) \quad \text{Re} \left\{ \sqrt{-1}Z^*_x(x)\xi \cdot (Z(x) - Z(y)) - (Z^*_x(x)\xi) \cdot (Z(x) - Z(y)) \right\} \leq -c|\xi| |Z(x) - Z(y)|^2,
\]

where \(\langle \zeta \rangle = (\zeta_1^2 + \cdots + \zeta_m^2)^{1/2} \).

3. HYPO-ANALYTIC PSEUDODIFFERENTIAL OPERATORS

Our aim is to introduce pseudodifferential operators that are naturally associated with hypo-analytic structures. This definition generalizes analytic pseudodifferential operators (for a treatment of the analytic theory see [6]).

Definition 3.1. Let \(d \) be a real number. We denote by \(\mathcal{S}^d(U, U) \) the space of holomorphic functions \(\tilde{a}(z, w, \theta) \) in a product set \(\mathcal{E} \times \mathcal{E} \times \mathcal{E} \) with \(\mathcal{E} \) an open neighborhood of \(Z(U) \) and \(\mathcal{E} \) an open cone in \(C_m \setminus \{0\} \) containing \(R_m \setminus \{0\} \), which have the following property:
Given any compact subset K of \mathcal{C} and any closed cone $\mathcal{C}' \subset \mathcal{C}$ whose interior contains $R_m \setminus \{0\}$, there is a constant $r > 0$ such that for all z, w in K and all θ in \mathcal{C}', we have:

$$|\tilde{a}(z, w, \theta)| \leq r(1 + |\theta|)^d.$$

Definition 3.2. We say that a C^∞ function $a(x, y, \theta)$ in $U \times U \times R_m$ is a hypo-analytic amplitude of degree d and we write $a \in S^d(U, U)$ if there is $\tilde{a} \in S^d(U, U)$ such that

$$a(x, y, \theta) = \tilde{a}(Z(x), Z(y), \theta), \quad \text{for all } x \in U, \ y \in U, \ 0 \not= \theta \in R_m.$$

Let $a(x, y, \theta) = \tilde{a}(Z(x), Z(y), \theta)$ be a hypo-analytic amplitude of degree $d \in \mathbb{R}$ in $U \times U$. For any $\varepsilon > 0$ and $u \in C_0^0(U)$ we define the linear operator

$$A^\varepsilon u(x) = \left(\frac{1}{4\pi^3} \right)^{m/2} \int_U \int_{R_m} \exp(\sqrt{-1} \xi \cdot (Z(x) - Z(y)) - \varepsilon |\xi|^2) a(x, y, \xi) u(y) dZ(y) d\xi.$$

We contract U sufficiently so that for every $x, y \in U$ and $\xi \in R_m$ the point $Z^*_x(x)\xi + \sqrt{-1}(Z^*_x(x)\xi)(Z(x) - Z(y))$ will remain in the cone in which $a(x, y, \cdot)$ is defined. We observe that each $A^\varepsilon u$ is a hypo-analytic function.

Theorem 3.1. When $\varepsilon \to 0$, A^ε converges to a continuous linear operator $A: E'(U) \to D'(U)$ which maps $C_c^\infty(U)$ into $C^\infty(U)$ continuously.

Proof. We deform the path of ξ-integration from R_m to the image of R_m under the map

$$\xi \rightarrow \zeta(\xi) = Z^*_x(x)\xi + \sqrt{-1}(Z^*_x(x)\xi)(Z(x) - Z(y)).$$

Thus

$$A^\varepsilon u(x) = \left(\frac{1}{4\pi^3} \right)^{m/2} \int_U \int_{R_m} \exp(\sqrt{-1} Z^*_x(x)\xi \cdot (Z(x) - Z(y)))$$

$$- (Z^*_x(x)\xi)(Z(x) - Z(y))^2 - \varepsilon(\zeta(\xi))^2)$$

$$\times a(x, y, \zeta(\xi)) u(y) \det \left(\frac{\partial \xi}{\partial \zeta} \right) dZ(y) d\xi.$$

If the amplitude a has degree $d < -m - 1$ and $u \in C_c(U)$, condition (2.1) will imply that $A^\varepsilon u$ converges uniformly on compact subsets of U to a continuous function Au. Moreover, in this case, $A: C_c^0(U) \to C^0(U)$ will be a continuous operator.

In general, if the degree of $a = d$, we consider the holomorphic functions

$$A^\varepsilon u(z) = \left(\frac{1}{4\pi^3} \right)^{m/2} \int_U \int_{R_m} \exp(\sqrt{-1} \xi \cdot (z - Z(y)) - \varepsilon |\xi|^2) \tilde{a}(z, Z(y), \xi) u(y) dZ(y) d\xi.$$
We denote the Laplacian \(\sum_{j=1}^{m} D_{z_j}^2 \) by \(\Delta_z \) and write

\[
A^S u(z) = \left(\frac{1}{4\pi^3} \right)^{m/2} \int_U \int_{R_m} (1 - \Delta_z)^k \left\{ e^{\sqrt{-1} \xi(\bar{z} - Z(y)) - \bar{\varepsilon}|\xi|^2} \right\} \frac{\bar{\partial}}{(1 + |\xi|^2)^k} u(y) \, dZ(y) \, d\xi.
\]

In the latter, we apply the transposed Leibniz formula to get

\[
\left\{ (1 - \Delta_z)^k e^{\sqrt{-1} \xi(\bar{z} - \omega)} \right\} \bar{a}(z, \omega, \xi) = \sum_{|\alpha + \beta| \leq 2k} c_{\alpha, \beta} \left(\frac{\partial}{\partial z} \right)^\alpha \left(\frac{\partial}{\partial \xi} \right)^\beta \bar{a}(z, \omega, \xi),
\]

where the \(c_{\alpha, \beta} \) are integers.

We can thus write \(A^S u(x) = \sum_{|\alpha| \leq 2k} M^\alpha(A^S u(x)) \), where the \(A^\alpha \) are defined like \(A^S \) except that their amplitudes have degree \(\leq d - 2k \). For \(k \) sufficiently large we have shown that \(A^S u \) converges to a continuous function. Therefore, \(A^S u \) converges to \(Au \) in the space \(\mathcal{D}'(U) \). Suppose now \(u \in \mathcal{D}'(U) \). We choose continuous functions \(u_\alpha \in C^\alpha_c(U) \) that satisfy \(u = \sum_{|\alpha| \leq k} M^\alpha(u_\alpha) \). We may integrate by parts to get, for each \(\alpha \), \(A^\alpha(M^\alpha u_\alpha) = A^\alpha(u_\alpha) \), where the degree of the amplitude of \(A^\alpha \) is \(\leq |\alpha| + d \). Thus \(A^S u = \sum_{|\alpha| \leq k} M^\alpha(u_\alpha) \) which brings us to a situation already considered. We conclude that \(A^S u \rightarrow Au \) in \(\mathcal{D}'(U) \).

Suppose now \(u \in C^\infty_c(U) \). We denote \(\sum_{j=1}^{m} M_j^2 \) by \(M_\delta \), where the \(M_j \) are vector fields satisfying \(M_j Z^k = \delta_j \). Integration by parts gives

\[
(3.2) \quad A^S u(x) = \left(\frac{1}{4\pi^3} \right)^{m/2} \int_U \int_{R_m} \exp(\sqrt{-1} \xi \cdot (Z(x) - Z(y)) - \varepsilon|\xi|^2) \times \frac{(1 - \Delta_M)^k \{a(x, y, \xi)u(y)\}}{(1 + |\xi|^2)^k} \, dZ(y) \, d\xi.
\]

After deforming contour as in (3.1), we see that \(A^S u \) converges in \(C^\alpha_c(U) \) to the continuous function \(Au \). Moreover, the same convergence also occurs for \(M_\alpha(A^S u) \) for all \(\alpha \). It follows that \(Au \in C^\infty(U) \). Finally, we will show that the operator \(A: C^\infty_c(U) \rightarrow C^\infty(U) \) is continuous. Let \(u \in C^\infty_c(U) \). We can write (3.2) as

\[
(3.3) \quad Au(x) = \left(\frac{1}{4\pi^3} \right)^{m/2} \int_U \int_{R_m} \exp(\sqrt{-1} Z(x) \xi \cdot (Z(x) - Z(y)) - \langle Z^\ast(x) \xi \rangle (Z(x) - Z(y))^2) \times \frac{(1 - \Delta_M)^k \{a(x, y, \xi)u(y)\}}{(1 + |\xi|^2)^k} \, \det \frac{\partial^\xi}{\partial \xi} \, dZ(y) \, d\xi.
\]

We note that both the exponential term and \(\det \frac{\partial^\xi}{\partial \xi} \) are bounded. Suppose now the sequence \(u_n \rightarrow u \) in \(C^\infty_c(U) \). Then (3.3) shows that \(Au_n \rightarrow Au \) in
To conclude the proof, it suffices to show that for every multi-index α, the sequence $M^{\alpha}(Au_n)$ is uniformly convergent on compact subsets of U.

For each α, there is an amplitude b^{α} of degree $\leq d + |\alpha|$ such that

\[
M^{\alpha}(A^\varepsilon u)(x) = \left(\frac{1}{4\pi^3}\right)^{m/2} \int_{R_m} \int_U \exp\left(\sqrt{-1}\xi \cdot (Z(x) - Z(y)) - \varepsilon|\xi|^2\right)b^{\alpha}(x, y, \xi)u(y)\,dZ(y)\,d\xi.
\]

By what we have already seen, the right-hand side converges in the space $C^0_c(U)$.

Definition 3.3. The operator $A: \mathcal{E}'(U) \to \mathcal{E}'(U)$ of Theorem 3.1 will be called a hypo-analytic pseudodifferential operator.

Example. A hypo-analytic differential operator on Ω may be defined as a linear differential operator P on Ω satisfying the following property:

For every open subset Ω' of Ω and every hypo-analytic function f on Ω', Pf is hypo-analytic on Ω'. In the hypo-analytic chart (U, Z), let M_{j} $(1 \leq j \leq m)$ be the vector fields satisfying

\[
M_{j}Z^k = \delta^k_j.
\]

Then a hypo-analytic differential operator P takes the form

\[
P = \sum_{|\alpha| \leq k} a_{\alpha}M^{\alpha},
\]

where each a_{α} is a hypo-analytic function on U. We will show that such an operator is an example of a hypo-analytic pseudodifferential operator. For $u \in E'(U)$ and $\varepsilon > 0$ let

\[
u^\varepsilon(x) = \left(\frac{1}{4\pi^3}\right)^{m/2} \int_{R_m} \int_U \exp\left(\sqrt{-1}\xi \cdot (Z(x) - Z(y)) - \varepsilon|\xi|^2\right)u(y)\,dZ(y)\,d\xi.
\]

In [1], the authors observed that $u^\varepsilon \to u$ in the space $\mathcal{D}'(U)$. Write P as $\sum_{|\alpha| \leq k} b_{\alpha}N^{\alpha}$ where each b_{α} is hypo-analytic and $N_{j} = -\sqrt{-1}M_{j}$ for each j. We then have

\[
N_{j}u^\varepsilon(x) = \left(\frac{1}{4\pi^3}\right)^{m/2} \int_{R_m} \int_U \exp\left(\sqrt{-1}\xi \cdot (Z(x) - Z(y)) - \varepsilon|\xi|^2\right)\xi_{j}u(y)\,dZ\,d\xi
\]

for each j and therefore

\[
Pu^\varepsilon(x) = \left(\frac{1}{4\pi^3}\right)^{m/2} \int_{R_m} \int_U \exp\left(\sqrt{-1}\xi \cdot (Z(x) - Z(y)) - \varepsilon|\xi|^2\right)\left(\sum_{|\alpha| \leq k} b_{\alpha}(x)\xi^{\alpha}\right)u(y)\,dZ\,d\xi.
\]
When \(\varepsilon \to 0 \), we get \(Pu = Au \), where \(A \) is the hypo-analytic pseudodifferential operator whose amplitude is

\[
\sum_{|\alpha| \leq k} b_{\alpha}(x) \xi^{\alpha}.
\]

4. Pseudolocal Property

The aim of this section is to show that hypo-analytic pseudodifferential operators map hypo-analytic functions to hypo-analytic functions.

Since the first and second derivatives of \(\Phi \) vanish at the origin, after shrinking \(U \) if necessary, we may assume that for all \(x, y \) in \(U \),

\[
|\Phi(x) - \Phi(y)| \leq |x - y|/2
\]

and

\[
(4.1) \quad |\Phi(y)| \leq 1/2|y|^2.
\]

We shall need the following lemma.

Lemma 4.1. Let \(A \) be a hypo-analytic pseudodifferential operator with amplitude \(a(x, y, \xi) = \tilde{a}(Z(x), Z(y), \xi) \) and let \(u \) be in \(E' \). If \(u \) vanishes in some neighborhood of 0, \(Au \) is hypo-analytic at 0.

Proof. For each \(\varepsilon > 0 \) we consider the holomorphic function

\[
\tilde{A}^\varepsilon u(z) = \left(\frac{1}{4\pi^3} \right)^{m/2} \int_U \int_{R_m} \exp(-i\xi \cdot (z - Z(y))) - \varepsilon |\xi|^2 \tilde{a}(z, Z(y), \xi) u(y) dZ(y) d\xi.
\]

We deform the path of \(\xi \)-integration from \(R_m \) to the image of \(R_m \) under the map \(\zeta(\xi) = \xi + \sqrt{-1}|\xi|((z - Z(y)) \) and write

\[
\tilde{A}^\varepsilon u(z) = \left(\frac{1}{4\pi^3} \right)^{m/2} \int_U \int_{R_m} \exp(-i\xi \cdot (z - Z(y))) - |\xi|(z - Z(y))^2 - \varepsilon \zeta(\xi))
\]

\[
\times \tilde{a}(z, Z(y), \zeta(\xi)) u(y) \frac{\partial \zeta}{\partial \xi} dZ(y) d\xi.
\]

Let \(Q(z) = \text{Re} \left\{ \sqrt{-1} \xi \cdot (z - Z(y)) - |\xi|((z - Z(y))^2) \right\} \). Using (4.1) we have

\[
Q(0) = \xi \cdot \phi(y) - |\xi|(|y|^2 - |\phi(y)|^2) \leq -\frac{1}{4}|y|^2|\xi|.
\]

Let \(d \) be a positive number such that \(y \in \text{supp} \ u \Rightarrow |y| > d \). Then \(Q(0) \leq -\frac{1}{4}d^2|\xi| \) which by continuity implies that \(Q(z) \leq -\frac{1}{4}d^2|\xi| \) for \(z \) in a sufficiently small neighborhood of 0. Therefore, as \(\varepsilon \to 0 \), \(\tilde{A}^\varepsilon u(z) \) converges uniformly on some neighborhood of 0. It follows that \(Au(x) = \tilde{A}u(Z(x)) \) is hypo-analytic at 0.
Theorem 4.2. Suppose A is a hypo-analytic pseudodifferential operator and $u \in \mathcal{E}'(U)$. If u is hypo-analytic at 0 then Au is hypo-analytic at 0.

Proof. Let \tilde{u} be a holomorphic function such that $u(y) = \tilde{u}(Z(y))$ for y near 0. In the integral for $\tilde{A}^* u(z)$ we deform the "y-contour" from U to the image of U under the map $Z(y) \rightarrow \tilde{Z}(y) = Z(y) - \sqrt{-1} \chi(y) d\xi/|\xi|$, where d is a sufficiently small positive number, $\chi \in C^\infty_c(U)$, $0 \leq \chi \leq 1$, $\chi \equiv 1$ near 0 and $\text{supp} \chi$ sufficiently small. We may thus write

$$\tilde{A}^* u(z) = \left(\frac{1}{4\pi^2} \right)^{m/2} \int_{R_m^*} \int_U \exp(\sqrt{-1}\xi(z - Z(y))) - d\chi(y)|\xi| - \epsilon|\xi|^2\right)$$

$$\times a(z, \tilde{Z}(y), \xi) \tilde{u}(\tilde{Z}(y)) d\tilde{Z}(y) d\xi.$$

We next deform the ξ-integration to the image of R_m under the map $\xi \rightarrow \xi(z) = \tilde{\xi} + \sqrt{-1}|\xi|(z - Z(y))$. We will show that $\tilde{A}^* u(z)$ converges uniformly near $z = 0$. To prove this, we will estimate

$$Q(z) = \text{Re}\{\sqrt{-1}\xi(z - Z(y)) - |\xi|(z - Z(y))^2 - d\chi(y)(\xi(\xi))\}.$$

Lemma 4.1 allows us to shrink the support of u so that when $y \in \text{supp} u$ and z is small enough, $|\xi|/2 \leq \text{Re}(\xi(\xi))$. Moreover, for such z and y we have: $Re\{\sqrt{-1}\xi(z - Z(y)) - |\xi|(z - Z(y))^2\} \leq (|y|^2/8 + 3|z|)|\xi|$. Therefore for z near 0, $Q(z) \leq -(|y|^2/8 + d\chi(y)/2 - 3|z|)|\xi|$. This estimate together with the fact that $\chi(y) \equiv 1$ near $y = 0$ yield the required result.

In [1] the authors microlocalized hypo-analyticity by first adapting Sato's definition and then showing its equivalence with the one derived from the Fourier–Bros–Iagolnitzer transform [4]. The operators defined in this paper also preserve microlocal hypo-analyticity [3].

Acknowledgments

I wish to express my gratitude to Professor Francois Treves for his advice and encouragement during his direction of my dissertation [2] which is an offspring of [1] and [5].

References

Current address: Department of Mathematics, Temple University, Philadelphia, PA.
19122