-groups with Sylow towers

Author:
Elsa L. Gunter

Journal:
Proc. Amer. Math. Soc. **105** (1989), 555-563

MSC:
Primary 20C15

MathSciNet review:
955459

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite group, all of whose irreducible complex characters are induced from linear characters. Suppose that has a normal series of Hall subgroups such that , and is a power of a prime, for each . If is a normal subgroup of , then every irreducible complex character of is induced from a linear character.

**[1]**Everett C. Dade,*Normal subgroups of 𝑀-groups need not be 𝑀-groups*, Math. Z.**133**(1973), 313–317. MR**0325748****[2]**Everett C. Dade,*Monomial characters and normal subgroups*, Math. Z.**178**(1981), no. 3, 401–420. MR**635210**, 10.1007/BF01214878**[3]**Larry Dornhoff,*𝑀-groups and 2-groups*, Math. Z.**100**(1967), 226–256. MR**0217174****[4]**I. Martin Isaacs,*Character theory of finite groups*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Pure and Applied Mathematics, No. 69. MR**0460423****[5]**I. Martin Isaacs,*Primitive characters, normal subgroups, and 𝑀-groups*, Math. Z.**177**(1981), no. 2, 267–284. MR**612879**, 10.1007/BF01214205**[6]**I. M. Isaacs,*Characters of 𝜋-separable groups*, J. Algebra**86**(1984), no. 1, 98–128. MR**727371**, 10.1016/0021-8693(84)90058-9**[7]**I. Martin Isaacs,*Character stabilizer limits relative to a normal nilpotent subgroup*, J. Algebra**102**(1986), no. 2, 367–375. MR**853249**, 10.1016/0021-8693(86)90115-8**[8]**Alan E. Parks,*Nilpotent by supersolvable 𝑀-groups*, Canad. J. Math.**37**(1985), no. 5, 934–962. MR**806649**, 10.4153/CJM-1985-051-0

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20C15

Retrieve articles in all journals with MSC: 20C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0955459-3

Article copyright:
© Copyright 1989
American Mathematical Society