-groups with Sylow towers

Author:
Elsa L. Gunter

Journal:
Proc. Amer. Math. Soc. **105** (1989), 555-563

MSC:
Primary 20C15

DOI:
https://doi.org/10.1090/S0002-9939-1989-0955459-3

MathSciNet review:
955459

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite group, all of whose irreducible complex characters are induced from linear characters. Suppose that has a normal series of Hall subgroups such that , and is a power of a prime, for each . If is a normal subgroup of , then every irreducible complex character of is induced from a linear character.

**[1]**E. C. Dade,*Normal subgroups of**-groups need not be**-groups*, Math. Z.**133**(1973), 313-317. MR**0325748 (48:4094)****[2]**-,*Monomial characters and normal subgroups*, Math. Z.**152**(1981), 401-420. MR**635210 (83e:20014)****[3]**L. Dornhoff,*-groups and**-groups*, Math. Z.**100**(1967), 226-256. MR**0217174 (36:265)****[4]**I. M. Isaacs,*Character theory of finite groups*, Academic Press, New York, 1976. MR**0460423 (57:417)****[5]**-,*Primitive characters, normal subgroups, and**-groups*, Math. Z.**177**(1981), 267-284. MR**612879 (82f:20026)****[6]**-,*Characters of**-separable groups*, J. Algebra**86**(1984), 98-128. MR**727371 (85h:20012)****[7]**-,*Character stabilizer limits relative to a normal nilpotent subgroup*, J. Algebra**102**(1986), 367-375. MR**853249 (88b:20017a)****[8]**A. E. Parks,*Nilpotent by supersolvable**-groups*, Canad. J. Math.**37**(5) (1985), 934-962. MR**806649 (86m:20010)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20C15

Retrieve articles in all journals with MSC: 20C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0955459-3

Article copyright:
© Copyright 1989
American Mathematical Society