The variety of pairs of matrices with rank

Author:
Michael G. Neubauer

Journal:
Proc. Amer. Math. Soc. **105** (1989), 787-792

MSC:
Primary 14A25; Secondary 14A10, 15A30

MathSciNet review:
931743

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We will show that the variety of pairs of matrices over an algebraically closed field with rank one commutator consists of irreducible components each of dimension .

**[1]**Murray Gerstenhaber,*On dominance and varieties of commuting matrices*, Ann. of Math. (2)**73**(1961), 324–348. MR**0132079****[2]**Robert M. Guralnick,*A note on pairs of matrices with rank one commutator*, Linear and Multilinear Algebra**8**(1979/80), no. 2, 97–99. MR**552353**, 10.1080/03081087908817305**[3]**Klaus Hulek,*A remark on certain matrix varieties*, Linear and Multilinear Algebra**10**(1981), no. 3, 169–172. MR**630145**, 10.1080/03081088108817409**[4]**Thomas J. Laffey,*Simultaneous triangularization of matrices—low rank cases and the nonderogatory case*, Linear and Multilinear Algebra**6**(1978/79), no. 4, 269–305. MR**515915**, 10.1080/03081087808817249**[5]**Peter Lancaster and Miron Tismenetsky,*The theory of matrices*, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1985. MR**792300****[6]**T. S. Motzkin and Olga Taussky,*Pairs of matrices with property 𝐿. II*, Trans. Amer. Math. Soc.**80**(1955), 387–401. MR**0086781**, 10.1090/S0002-9947-1955-0086781-5

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
14A25,
14A10,
15A30

Retrieve articles in all journals with MSC: 14A25, 14A10, 15A30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0931743-4

Article copyright:
© Copyright 1989
American Mathematical Society