Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A splitting theorem for complete manifolds with nonnegative curvature operator


Author: Maria Helena Noronha
Journal: Proc. Amer. Math. Soc. 105 (1989), 979-985
MSC: Primary 53C20
DOI: https://doi.org/10.1090/S0002-9939-1989-0933519-0
MathSciNet review: 933519
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that any complete, noncompact, simply connected Riemannian manifold with nonnegative curvature operator is isometric to the product of its compact soul (in the sense of Cheeger-Gromoll) and a complete manifold diffeomorphic to a Euclidean space


References [Enhancements On Off] (What's this?)

  • [CE] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975. MR 0458335 (56:16538)
  • [CG] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413-443. MR 0309010 (46:8121)
  • [CY] B. Chow and D. Yang, A classification of compact Riemannian manifolds with nonnegative curvature operator, preprint.
  • [GH] S. Gallot and D. Meyer, Opérateur de courbure et Laplacien des formes différentielles d'une variété Riemanniene, J. Math. Pures Appl. 54 (1975), 285-304. MR 0454884 (56:13128)
  • [H] R. Hermann, On the differential geometry of foliations, Ann. of Math. (2) 72 (1960), 445-457. MR 0142130 (25:5523)
  • [KW] N. Kleinjohann and R. Walter, Nonnegativity of the curvature operator and isotropy for isometric immersions, Math. Z. 181 (1982), 129-142. MR 671719 (84k:53053)
  • [O] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. MR 0200865 (34:751)
  • [S] M. Strake, A splitting theorem for open nonnegatively curved manifolds, (to appear in Manuscripta Math.) MR 949821 (89g:53066)
  • [T] V. A. Toponogov, Spaces with straight lines, Amer. Math. Soc. Transl. 37 (1964), 287-290.
  • [Wa] G. Walschap, A splitting theorem for $ 4$-dimensional manifolds of nonnegative curvature, Proc. Amer. Math. Soc. (to appear) MR 958080 (89g:53068)
  • [We] A. Weinstein, Positive curved $ n$-manifolds in $ {{\mathbf{R}}^{n + 2}}$, J. Differential Geom. 4 (1970), 1-4. MR 0264562 (41:9154)
  • [Y$ _{1}$] J.-W. Yim, Distance nonincreasing retraction on a complete open manifold of nonnegative curvature, Ann. Global Anal. Geom. (to appear) MR 982765 (90a:53049)
  • [Y$ _{2}$] -, Space of souls in a complete open manifold of nonnegative curvature, preprint.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C20

Retrieve articles in all journals with MSC: 53C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0933519-0
Keywords: Nonnegative curvature, soul
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society