Approximating the invariant densities of transformations with infinitely many pieces on the interval

Authors:
P. Góra and A. Boyarsky

Journal:
Proc. Amer. Math. Soc. **105** (1989), 922-928

MSC:
Primary 58F11

MathSciNet review:
953006

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be a piecewise continuous, expanding transformation with infinitely many pieces of monotonicity. We construct a sequence of transformations , each having a finite partition, such that their invariant densities converge in to the invariant density of .

**[1]**Marek Rychlik,*Bounded variation and invariant measures*, Studia Math.**76**(1983), no. 1, 69–80. MR**728198****[2]**Giulio Pianigiani,*First return map and invariant measures*, Israel J. Math.**35**(1980), no. 1-2, 32–48. MR**576460**, 10.1007/BF02760937**[3]**Gerhard Keller,*Stochastic stability in some chaotic dynamical systems*, Monatsh. Math.**94**(1982), no. 4, 313–333. MR**685377**, 10.1007/BF01667385**[4]**P. Góra and A. Boyarsky,*Compactness and invariant densities for families of expanding, piecewise monotonic transformations*, preprint.**[5]**Tien Yien Li,*Finite approximation for the Frobenius-Perron operator. A solution to Ulam’s conjecture*, J. Approximation Theory**17**(1976), no. 2, 177–186. MR**0412689****[6]**Abraham Boyarsky,*Approximating the 𝜎-finite measure invariant under a nonexpanding map*, J. Math. Anal. Appl.**78**(1980), no. 1, 222–232. MR**595778**, 10.1016/0022-247X(80)90224-3**[7]**P. Góra and A. Boyarsky,*Why computers like Lebesgue measure*, Comput. Math. Appl.**16**(1988), no. 4, 321–329. MR**959419**, 10.1016/0898-1221(88)90148-4**[8]**A. Lasota and James A. Yorke,*On the existence of invariant measures for piecewise monotonic transformations*, Trans. Amer. Math. Soc.**186**(1973), 481–488 (1974). MR**0335758**, 10.1090/S0002-9947-1973-0335758-1

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58F11

Retrieve articles in all journals with MSC: 58F11

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0953006-3

Article copyright:
© Copyright 1989
American Mathematical Society