Approximating the invariant densities of transformations with infinitely many pieces on the interval

Authors:
P. Góra and A. Boyarsky

Journal:
Proc. Amer. Math. Soc. **105** (1989), 922-928

MSC:
Primary 58F11

DOI:
https://doi.org/10.1090/S0002-9939-1989-0953006-3

MathSciNet review:
953006

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be a piecewise continuous, expanding transformation with infinitely many pieces of monotonicity. We construct a sequence of transformations , each having a finite partition, such that their invariant densities converge in to the invariant density of .

**[1]**M. Rychlik,*Bounded variation and invariant measures*, Studia Math.,**LXXVI**(1983), 69-80. MR**728198 (85h:28019)****[2]**G. Pianigiani,*First return map and invariant measures*, Israel J. Math.**35**(1980), 32-48. MR**576460 (82a:58031)****[3]**G. Keller,*Stochastic stability in some chaotic dynamical systems*, Monatsh. Math.**94**(1982), 313-333. MR**685377 (84k:58130)****[4]**P. Góra and A. Boyarsky,*Compactness and invariant densities for families of expanding, piecewise monotonic transformations*, preprint.**[5]**T-Y Li,*Finite approximation for the Frobenius-Perron operator. A solution to Ulam 's conjecture*, J. Approx. Theory**17**(1976), 177-186. MR**0412689 (54:811)****[6]**A. Boyarsky,*Approximating the**-finite measure invariant under a non-expanding map*, J. Math. Anal. Appl.**78**(1980), 222-232. MR**595778 (82b:28030)****[7]**P. Góra and A. Boyarsky,*Why computers like Lebesgue measure*, Applic. 16, No. 4, 321-329, 1988. Comput. Math. MR**959419 (89m:58107)****[8]**A. Lasota and J. A. Yorke,,*On the existence of invariant measures for piecewise monotonic transformations*, Trans. Amer. Math. Soc.**186**(1973), 481-488. MR**0335758 (49:538)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58F11

Retrieve articles in all journals with MSC: 58F11

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0953006-3

Article copyright:
© Copyright 1989
American Mathematical Society