Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The spectral and Fredholm theory of extensions of bounded linear operators


Author: Bruce A. Barnes
Journal: Proc. Amer. Math. Soc. 105 (1989), 941-949
MSC: Primary 47A20; Secondary 47A10, 47A53, 47B38
DOI: https://doi.org/10.1090/S0002-9939-1989-0955454-4
MathSciNet review: 955454
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Assume $ T$ is a bounded linear operator on some Banach space $ Y$, and that $ T$ has a bounded extension $ \bar T$ on another space. In general almost nothing can be said concerning the relationship between the spectral and Fredholm properties of $ T$ and $ \bar T$. However, assuming the special condition that the range of $ \bar T$ lies in $ Y$, it is shown that these properties are essentially the same for $ T$ and $ \bar T$.


References [Enhancements On Off] (What's this?)

  • [1] B. Barnes, G. Murphy, S. Smyth, and T. West, Riesz and Fredholm theory in Banach algebras, Pitman, Boston, 1982.
  • [2] B. Barnes, Interpolation of the spectrum of bounded operators on Lebesgue spaces, Rocky Mountain J. Math. (to appear). MR 1065835 (91f:47047)
  • [3] -, Operators symmetric with respect to a pre-innerproduct (preprint).
  • [4] D. Boyd, The spectrum of the Cesaro operator, Acta. Sci. Math. 29 (1968), 31-34. MR 0239441 (39:798)
  • [5] S. Caradus, W. Pfaffenberger, and B. Yood, Calkin algebras and algebras of operators on Banach spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 9, Marcel Dekker Inc. New York, 1974. MR 0415345 (54:3434)
  • [6] N. Dunford and J. Schwartz, Linear operators, Part I, Interscience, New York, 1964.
  • [7] S. Grabiner, Spectral consequences of the existence of intertwining operators, Comment. Math. 22 (1981), 227-238. MR 641436 (83a:47003)
  • [8] E. Hewitt and K. Ross, Abstract harmonic analysis I, Springer-Verlag, Berlin, 1963.
  • [9] V. Istratescu, Introduction to linear operator theory, Marcel Dekker, Inc., New York, 1981. MR 608969 (83d:47002)
  • [10] K. Jörgens, Linear integral operators, Pitman, Boston, 1982.
  • [11] P. Lax, Symmetrizable linear transformations, Comm. Pure Appl. Math. 7 (1954), 633-647. MR 0068116 (16:832d)
  • [12] J. Nieto, On the essential spectrum of symmetrizable operators, Math. Ann. 178 (1968), 145-153. MR 0233221 (38:1544)
  • [13] E. Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Tarrytown-on-Hudson, N.Y., 1971. MR 0423083 (54:11066)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A20, 47A10, 47A53, 47B38

Retrieve articles in all journals with MSC: 47A20, 47A10, 47A53, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0955454-4
Keywords: Extension, spectral theory, Fredholm theory
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society