Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The spectral and Fredholm theory of extensions of bounded linear operators


Author: Bruce A. Barnes
Journal: Proc. Amer. Math. Soc. 105 (1989), 941-949
MSC: Primary 47A20; Secondary 47A10, 47A53, 47B38
MathSciNet review: 955454
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Assume $ T$ is a bounded linear operator on some Banach space $ Y$, and that $ T$ has a bounded extension $ \bar T$ on another space. In general almost nothing can be said concerning the relationship between the spectral and Fredholm properties of $ T$ and $ \bar T$. However, assuming the special condition that the range of $ \bar T$ lies in $ Y$, it is shown that these properties are essentially the same for $ T$ and $ \bar T$.


References [Enhancements On Off] (What's this?)

  • [1] B. Barnes, G. Murphy, S. Smyth, and T. West, Riesz and Fredholm theory in Banach algebras, Pitman, Boston, 1982.
  • [2] Bruce A. Barnes, Interpolation of spectrum of bounded operators on Lebesgue spaces, Proceedings of the Seventh Great Plains Operator Theory Seminar (Lawrence, KS, 1987), 1990, pp. 359–378. MR 1065835, 10.1216/rmjm/1181073112
  • [3] -, Operators symmetric with respect to a pre-innerproduct (preprint).
  • [4] D. W. Boyd, The spectrum of the Cesàro operator, Acta Sci. Math. (Szeged) 29 (1968), 31–34. MR 0239441
  • [5] S. R. Caradus, W. E. Pfaffenberger, and Bertram Yood, Calkin algebras and algebras of operators on Banach spaces, Marcel Dekker, Inc., New York, 1974. Lecture Notes in Pure and Applied Mathematics, Vol. 9. MR 0415345
  • [6] N. Dunford and J. Schwartz, Linear operators, Part I, Interscience, New York, 1964.
  • [7] Sandy Grabiner, Spectral consequences of the existence of intertwining operators, Comment. Math. Prace Mat. 22 (1980/81), no. 2, 227–238. MR 641436
  • [8] E. Hewitt and K. Ross, Abstract harmonic analysis I, Springer-Verlag, Berlin, 1963.
  • [9] Vasile I. Istrăţescu, Introduction to linear operator theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 65, Marcel Dekker, Inc., New York, 1981. MR 608969
  • [10] K. Jörgens, Linear integral operators, Pitman, Boston, 1982.
  • [11] Peter D. Lax, Symmetrizable linear transformations, Comm. Pure Appl. Math. 7 (1954), 633–647. MR 0068116
  • [12] Joseph I. Nieto, On the essential spectrum of symmetrizable operators, Math. Ann. 178 (1968), 145–153. MR 0233221
  • [13] Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Tarrytown-on-Hudson, N. Y., 1971. MR 0423083

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A20, 47A10, 47A53, 47B38

Retrieve articles in all journals with MSC: 47A20, 47A10, 47A53, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0955454-4
Keywords: Extension, spectral theory, Fredholm theory
Article copyright: © Copyright 1989 American Mathematical Society