Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fixed points of automorphisms of compact Riemann surfaces and higher-order Weierstrass points


Authors: Ryutaro Horiuchi and Tomihiko Tanimoto
Journal: Proc. Amer. Math. Soc. 105 (1989), 856-860
MSC: Primary 30F35; Secondary 14F07, 14H99
DOI: https://doi.org/10.1090/S0002-9939-1989-0957265-2
MathSciNet review: 957265
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A sufficient condition for fixed points of an automorphism of prime order on a compact Riemann surface to be higher-order Weierstrass points is given. This leads us to a complete study of the cases where the prime orders are small.


References [Enhancements On Off] (What's this?)

  • [1] R. D. M. Accola, On generalized Weierstrass points on Riemann surfaces, Modular functions in analysis and number theory, 1-19, Lecture Notes Mathematics Statistics, 5, University of Pittsburgh, Pittsburgh, PA, 1983. MR 732958 (85f:14016)
  • [2] A. Duma, Holomorphe Differentiale höherer Ordnung auf kompakten Riemannschen Flächen, Schriftenreihe der Univ. Münster, 2, Serie, Heft 14, 1978. MR 515153 (80g:14026)
  • [3] H. M. Farkas and I. Kra, Riemann surfaces, Graduate texts in Math. 71, Springer-Verlag, New York, 1980. MR 583745 (82c:30067)
  • [4] I. Guerrero, Automorphisms of compact Riemann surfaces and Weierstrass points, Riemann Surfaces and Related Topics, Proceedings of the 1978 Stony Brook Conference, Princeton University Press, Princeton, NJ, 1980. MR 624815 (82j:14027)
  • [5] J. Lewittes, Automorphisms of compact Riemann surfaces, Amer. J. Math. 85 (1963), 732-752. MR 0160893 (28:4102)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30F35, 14F07, 14H99

Retrieve articles in all journals with MSC: 30F35, 14F07, 14H99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0957265-2
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society