Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Multiplicative subgroups of index three in a field


Authors: David B. Leep and Daniel B. Shapiro
Journal: Proc. Amer. Math. Soc. 105 (1989), 802-807
MSC: Primary 11T99
MathSciNet review: 963572
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Theorem. If $ G$ be a subgroup of index 3 in the multiplicative group $ {F^*}$ of a field $ F$, then $ G + G = F$, except in the cases $ \left\vert F \right\vert = 4,7,13,{\text{or}}\,16$. The elementary methods used here provide a new proof of the classical case when $ F$ is finite.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11T99

Retrieve articles in all journals with MSC: 11T99


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1989-0963572-X
Article copyright: © Copyright 1989 American Mathematical Society