Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A family of abelian varieties rationally isogenous to no Jacobian


Author: James L. Parish
Journal: Proc. Amer. Math. Soc. 106 (1989), 1-7
MSC: Primary 11G10; Secondary 14H40, 14K07
DOI: https://doi.org/10.1090/S0002-9939-1989-0929427-1
MathSciNet review: 929427
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {E_d}$, for any $ d \in {\mathbf{Q}}{(i)^*}$, be the curve $ {x^3} - dx{z^2} = {y^2}z$, and let $ g$ be any positive integer. It is shown that, if $ d$ is not a square in $ {\mathbf{Q}}(i)$ and $ g > 1$, the abelian variety $ E_d^g$ is not isogenous over $ {\mathbf{Q}}(i)$ to the Jacobian of any genus- $ g$ curve. The proof proceeds by showing that any curve whose Jacobian is isogenous to $ E_d^g$ over $ {\mathbf{Q}}(i)$ must be hyperelliptic, and then showing that no hyperelliptic curve can have Jacobian isogenous to $ E_d^g$ over $ {\mathbf{Q}}(i)$.


References [Enhancements On Off] (What's this?)

  • [1] S. Bloch, Algebraic cycles and values of $ L$-functions. I, J. Reine Angew. Math. 350 (1984), 94-108. MR 743535 (85i:11052)
  • [2] C. Ceresa, $ C$ is not equivalent to $ \bar C $ in its Jacobian, Ann. of Math. (2) 177 (1983), 285-291.
  • [3] P. Griffiths, Periods of integrals on algebraic manifolds, Ann. of Math. (2) 90 (1968), 805-865. MR 0233825 (38:2146)
  • [4] B. Gross, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Math., vol. 776, Springer-Verlag, Berlin and New York, 1980. MR 563921 (81f:10041)
  • [5] D. Mumford, Abelian varieties, Oxford Univ. Press, London, 1970. MR 0282985 (44:219)
  • [6] I. Shafarevich, Basic algebraic geometry, Springer-Verlag, Berlin and New York, 1974. MR 0366917 (51:3163)
  • [7] N. Stephens, Unpublished correspondence.
  • [8] A. Weil, Zum Beweis des Torellischen Sätzes, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. IIA, (1957), 33-53. MR 0089483 (19:683e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11G10, 14H40, 14K07

Retrieve articles in all journals with MSC: 11G10, 14H40, 14K07


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0929427-1
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society