Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Virtually regular coverings


Authors: María Teresa Lozano and Carmen Safont
Journal: Proc. Amer. Math. Soc. 106 (1989), 207-214
MSC: Primary 57M12; Secondary 57M25
DOI: https://doi.org/10.1090/S0002-9939-1989-0937849-8
MathSciNet review: 937849
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce the concept of virtually regular covering, which include all regular branched coverings and also some irregular ones. We prove that, as in the case of regular coverings, some properties of the branching set reflect properties of the cover for virtually regular coverings of $ {S^3}$, generalizing results of Kim-Tollefson, Lozano and Plotnick. As a consequence, we obtain that every virtually regular cover of $ {S^3}$ branched along a fracturable prime and non split link is Haken.


References [Enhancements On Off] (What's this?)

  • [1] C. McA. Gordon and R. A. Litherland, Incompressible surfaces in branched coverings, Symposium on the Smith Conjecture (Bass and Morgan, eds.) Academic Press, New York, 1984. MR 758466
  • [2] J. Hempel, $ 3$-manifolds, Ann. of Math. Stud., no. 86, Princeton Univ. Press, Princeton, N.J., 1976. MR 0415619 (54:3702)
  • [3] A. Hurwitz, Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1-60. MR 1510692
  • [4] P. K. Kim and J. L. Tollefson, Spliting the PL involutions of nonprime $ 3$-manifolds, Michigan Math. J. 27 (1980), 259-274. MR 584691 (81m:57007)
  • [5] M. T. Lozano, Arcbodies, Math. Proc. Cambridge Philos. Soc. 94 (1983), 253-260. MR 715045 (85e:57004)
  • [6] M. T. Lozano and J. Przytycki, Incompressible surfaces in the exterior of a closed 3 braid. I, Math. Proc. Cambridge Philos. Soc. 98 (1985), 275-299. MR 795894 (87a:57013)
  • [7] M. T. Lozano and C. Safont, Sobre cubiertas localmente ciclicas, Contribuciones Matematicas. Estudios en honor del Profesor Botella. U. C. de Madrid (1986), 169-175. MR 873517 (88h:57012)
  • [8] W. H. Meeks III and S. T. Yau, Topology of three dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. (2) 112 (1980), 441-484. MR 595203 (83d:53045)
  • [9] W. Meeks III, L. Simon and S. T. Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. 116 (1982), 621-659. MR 678484 (84f:53053)
  • [10] S. P. Plotnick, Finite group actions and nonseparating $ 2$-spheres, Proc. Amer. Math. Soc. 90 (1984), 430-432. MR 728363 (85f:57024)
  • [11] D. Rolfsen, Knots and links, Publish or Perish, Inc., 1976. MR 0515288 (58:24236)
  • [12] L. Villarreal, Recubridores localmente ciclicos, Tesis doctoral Univ. Complutense de Madrid (1984).
  • [13] -, Una variedad localmente ciclica que no es ciclica, Actas VII Congreso de Matemáticos de Expresión Latina, vol 1, 1986, pp. 525-528.
  • [14] -, Los recubridores localmente ciclicos no son universales (1985), preprint.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M12, 57M25

Retrieve articles in all journals with MSC: 57M12, 57M25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0937849-8
Keywords: Branched coverings, incompressible surface, irreducible manifold, fracturable link
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society