A GENERALIZATION OF THE WEDDERBURN-ARTIN THEOREM

S. K. JAIN AND S. R. LÓPEZ-PERMOUTH

(Communicated by Donald S. Passman)

Abstract. The structure of rings such that each of its homomorphic images has the property that each cyclic right module over it is essentially embeddable in a direct summand is determined. Such rings are precisely (i) right uniserial rings, (ii) $n \times n$ matrix rings over two-sided uniserial rings with $n > 1$, or (iii) sums of rings of the types (i) and (ii).

1. Introduction

In this paper we study rings R with the following property (P): For all homomorphic images \overline{R} of R, every cyclic right \overline{R}-module is essentially embeddable in a direct summand of \overline{R}. Our results generalize the celebrated Wedderburn-Artin theorem which characterizes rings R such that over all the homomorphic images \overline{R} the cyclic modules are isomorphic to direct summands of \overline{R}. Examples of rings satisfying (P) include semisimple artinian rings and right uniserial rings. Indeed we show that a ring R has property (P) if and only if R is a direct sum of right uniserial rings and matrix rings over right self-injective right uniserial rings if and only if R is a semiperfect ring whose cyclic right modules are essentially embeddable in direct summands (Theorem 3.5). Throughout this paper, all rings have 1 and all modules are right unital, unless otherwise stated. By a right (left) uniserial ring, we mean a ring having a unique composition series of right (left) ideals. A ring which is both right and left uniserial will simply be called uniserial. A right uniserial ring is uniserial if it is right self-injective. For any module M, $E(M)$, $\text{Soc}(M)$ and $J(M)$ will denote, respectively, the injective hull, the socle, and the Jacobson radical of M.

2. Preliminary results

Throughout this section, we assume that R is a ring satisfying property (P).

2.1. Lemma. R is a semiperfect ring.
Proof. Let N = prime radical of R under our hypothesis, each right ideal of R/N is an annihilator right ideal and hence R is semiperfect [3, p. 204, Exercise 24.3(d)-(e)]. □

Since R is semiperfect, R has a complete orthogonal set e_1, \ldots, e_n of idempotents such that, for all i, $e_i R e_i$ is a local ring. In the lemmas which follow the decomposition $R = e_1 R \oplus \cdots \oplus e_n R$ will be frequently used. For R modules A and B, the notation $A \hookrightarrow B$ shall mean that A is essentially embeddable in B.

2.2. Lemma. For $R = e_1 R \oplus \cdots \oplus e_n R$, the following are true:

(i) $e_i R$ is uniform for all i,
(ii) $\text{Soc } R$ is essential in R, and
(iii) R has Goldie dimension n.

Proof. Let $S = \{S_1, \ldots, S_k\}$ be an irredundant set of representatives for the simple R-modules and let $P = \{e_1 R, \ldots, e_k R\}$ be a complete set of representatives for the projective indecomposable R modules.

Since every simple module S is cyclic, it is essentially embeddable in $e R$ for some idempotent $e \in R$. Clearly $e R$ is indecomposable. Thus we can define a function $f: S \to P$ by $f(S_i) = e_i R$ where $S_i \hookrightarrow e_i R$. The function f must be one to one, hence onto. It easily follows that each $e_j R$ ($j = 1, \ldots, n$) contains an essential simple submodule T_j and, therefore, each $e_j R$ is uniform. Also, $T_1 \oplus \cdots \oplus T_n = \text{Soc } R$ is essential in R. Thus R has Goldie dimension n. □

2.3. Lemma. R is right artinian.

Proof. Clearly each cyclic R-module has nonzero socle. Thus, R is left perfect because R is semiperfect [2]. Furthermore, since $J(R)/(J(R))^2$ is completely reducible, $J(R)/(J(R))^2$ is embeddable in $\text{Soc } R$. This yields $J(R)/(J(R))^2$ is finitely generated and so R is right artinian [1, p. 322]. □

2.4. Lemma. For $i \neq j$, let $e_i R$ and $e_j R$ be indecomposable summands of R. Then, either $e_i R$ is isomorphic to $e_j R$ or $\text{Hom}_R(e_i R, e_j R) = 0$.

Proof. Suppose $\sigma: e_i R \to e_j R$ is not zero, then $e_i R/\text{Ker } \sigma$ is embeddable in $e_j R$. Since $e_j R$ is uniform (Lemma 2.2), such an embedding must be essential. This implies $E(e_i R/\text{Ker } \sigma) \cong E(e_j R)$. Also, since R satisfies property (P) and it has Goldie dimension n, $E(R/\text{Ker } \sigma) \cong E(R)$. Let $R = e_1 R \oplus \cdots \oplus e_n R$. Then

$$R/\text{Ker } \sigma \cong e_1 R \oplus \cdots \oplus e_i R/\text{Ker } \sigma \oplus \cdots \oplus e_j R \oplus \cdots \oplus e_n R,$$

which yields

\[
\begin{align*}
E(e_1 R) & \oplus \cdots \oplus E(e_j R) \oplus \cdots \oplus E(e_i R) \\
& \cong E(R/\text{Ker } \sigma) \cong E(R) \cong E(e_1 R) \oplus \cdots \oplus E(e_j R) \oplus \cdots \oplus E(e_i R) \oplus \cdots \oplus E(e_n R).
\end{align*}
\]
Since $e_k R$ is uniform for all k, $E(e_k R)$ has local endomorphism ring. Hence from (1) $E(e_i R) \cong E(e_j R)$. But this implies that $E(e_i R)$ and $E(e_j R)$ contain isomorphic copies of the same simple submodule S and, therefore, $e_i R$ and $e_j R$ both contain essentially a copy of S. This implies that $e_i R$ is isomorphic to $e_j R$. □

2.5. Lemma. R is a direct sum of matrix rings over local rings.

Proof. Let $[e_i R] = \sum e_j R$, where the \sum runs over all j for which $e_j R \cong e_i R$. Renumbering if necessary we may write

$$R = [e_1 R] \oplus \cdots \oplus [e_k R]$$

where $k \leq n$. By Lemma 2.4, $[e_i R]$ is an ideal in R and so

$$R \cong M_{n_1}(e_1 R e_1) \oplus \cdots \oplus M_{n_k}(e_k R e_k)$$

where n_i is the number of summands in $[e_i R]$. □

Next we proceed to show that each local ring $e_i R e_i$ is indeed right uniserial.

2.6. Lemma. If $R = S_n$ is the $n \times n$ matrix ring over a local ring S, then S is right uniserial.

Proof. Write $R = e_{11} R \oplus \cdots \oplus e_{nn} R$, where $e_{11}, e_{22}, \ldots, e_{nn}$ are the usual matrix units. Notice that each $e_{ii} R$ is indecomposable since S is local.

Consider $I \subset e_{11} R$. Then $R/I \cong e_{11} R/I \times e_{22} R \times \cdots \times e_{nn} R$ is essentially embeddable in R because the Goldie dimension of R is n. Thus

$$E(R/I) \cong E(R)$$

and so

$$E(e_{11} R/I) \times E(e_{22} R) \times \cdots \times E(e_{nn} R) \cong E(e_{11} R) \times E(e_{22} R) \times \cdots \times E(e_{nn} R).$$

Since $e_{ii} R$ is uniform (Lemma 2.2), $E(e_{ii} R)$ is also uniform. Therefore, by Azumaya diagram, $E(e_{11} R/I) \cong E(e_{11} R)$. This implies $e_{11} R/I$ is uniform. It follows that the submodules of $e_{11} R$ are linearly ordered. We show now that $S \cong e_{11} R e_{11}$ is right uniserial. Let A, B be right ideals of $e_{11} R e_{11}$. Then $A e_{11} R e_{11} e_{11} R$ and $B e_{11} R e_{11} R$ and so either $A e_{11} R \subset B e_{11} R$ or $B e_{11} R \subset A e_{11} R$. But then either $A = A e_{11} R e_{11} e_{11} R e_{11} R = B$ or $B = B e_{11} R e_{11} e_{11} R e_{11} = A$, proving our assertion. □

In the next section we shall obtain a characterization of rings with property (P).

2.7. Remark. Note that in the proof of Lemmas 2.2–2.6 we have only used that R is a semiperfect ring each of whose cyclic R-modules is essentially embeddable in a direct summand of R.
3. Main results

We begin with

3.1. Theorem. Let R be a ring with property (P). Then R is a direct sum of matrix rings over right uniserial rings.

Proof. The proof follows from Lemmas 2.5, 2.6, 2.7 and the fact that ring direct summands of a ring with property (P) inherit the property (P). ∎

It is obvious that right uniserial rings have property (P). In what follows we will concentrate on showing that for a right uniserial ring S, the matrix ring $R = S_n$ $(n > 1)$ satisfies property (P) if and only if S is right self-injective. For the sake of our discussion we define property (Q) for modules. We say that an R-module M has property (Q) if each factor of M is essentially embeddable in a direct summand of M.

3.2. Lemma. The $n \times n$ matrix ring over R has property (Q) as a module over itself if and only if the R-module $R^{(n)}$ has property (Q).

Proof. Given a category isomorphism $F = \mathcal{M}_S \rightarrow \mathcal{M}_T$ between the categories of right modules of two rings S and T, it is obvious that a module $M \in \mathcal{M}_S$ satisfies (Q) if and only if $F(M) \in \mathcal{M}_T$ satisfies (Q). Our lemma follows from the fact that if $e_{11} \in R_n$ is the usual matrix unit then $R^{(n)} \in \mathcal{M}_R$ corresponds to $R_n \in \mathcal{M}_{R_n}$ under the category isomorphism.

\[- \otimes_{R_n} R_n e_{11} : \mathcal{M}_{R_n} \rightarrow \mathcal{M}_R. \] ∎

3.3. Lemma. If the R-module $R^{(n)}$ has property (Q) where R is right uniserial and $n > 1$, then R is right self-injective.

Proof. Let R be a right uniserial ring which is not right self-injective. Then there exists $s \in R$ such that $xs \notin Rx$. Without loss of generality, we may assume that s is invertible. Define $I = (x, -xs, 0, 0, \ldots, 0)R \subseteq R^{(n)}$. We claim that $R^{(n)}/I$ is not embeddable in $R^{(n)}$. Notice that both e_1R and e_2R are isomorphic to R as R-modules, where $e_1 = (1, 0, 0, \ldots, 0)$ and $e_2 = (0, 1, 0, \ldots, 0)$. Also, since $e_1R \cap e_2R = e_1xR_1 = e_2xR$. If $\psi : R^{(n)}/I \rightarrow R^{(n)}$ were an embedding of $R^{(n)}/I$ into $R^{(n)}$, and if $\psi(e_1) = (a_1, a_2, \ldots, a_n)$ and $\psi(e_2) = (b_1, b_2, \ldots, b_n)$, then there must exist i, j such that a_i invertible and b_j invertible. However, $\psi(e_1x) = (a_1x, a_2x, \ldots, a_nx)$ and $\psi(e_2xs) = (b_1xs, b_2xs, \ldots, b_nxs)$, which implies that $a_i x = b_j xs$. Hence $b_j^{-1}a_j x = xs$, contradicting our choice of s. So we have shown that the R-module $R^{(n)}$ does not satisfy (Q). ∎

3.4. Lemma. If R is a right self-injective right uniserial ring, then R_n satisfies property (P).

Proof. Since R is self-injective, it follows that R_n is also self-injective. Therefore, R_n satisfies property (Q) as a module over itself if and only if the injective hull of any cyclic R_n-module is embeddable in R_n. Let $e_{11} \in R_n$ be
the usual matrix unit and let I be a right ideal of R_n. Since $R_n \to R_n/I \to 0$ is exact, $(R_n \otimes_{R_n} R_ne_{11})_R \to (R_n/I \otimes_{R_n} R_ne_{11})_R \to 0$ is also exact. But $(R_n \otimes_{R_n} R_ne_{11})_R \cong (R_ne_{11})_R \cong R^{(n)}$. Therefore, $N = R_n/I \otimes_{R_n} R_ne_{11}$ is a homomorphic image of $R^{(n)}$. Thus N is an extension of a sum of k cyclic R-modules, $(k \leq n)$ [5, Lemma 1.16]. But then, since $e_{11}R_n$ corresponds to R under Hom$_R(R_ne_{11}, -)$, the inverse of $(_ \otimes_{R_n} R_ne_{11})$, it follows that there exist k quotients Q_1, \ldots, Q_k, of $e_{11}R_n$ such that $Q_1 \oplus \cdots \oplus Q_k \hookrightarrow R_n/I$. Now, $E(Q_i) \hookrightarrow\' e_{11}R_n$ for all i. Hence $E(R_n/I) = E(Q_1) \oplus \cdots \oplus E(Q_k) \hookrightarrow\' (e_{11}R_n)^{(k)} \hookrightarrow R_n$, proving that $E(R_n/I)$ is embeddable in R_n. Since each homomorphic image of R is again right self-injective right uniserial, it follows that R_n satisfies property (P). □

Our results are summarized in the following theorem.

3.5. **Theorem.** A ring R satisfies (P) if and only if R is a direct sum of right uniserial rings and matrix rings over right self-injective right uniserial rings if and only if R is a semiperfect ring whose cyclics are essentially embeddable in a direct summand of R.

Proof. The proof follows from Theorem 3.1 and Lemmas 3.2, 3.3 and 3.4 and Remark 2.7. □

Acknowledgment

The authors would like to thank Professor Carl Faith for pointing out that condition (1) in Exercise 24.3(e), page 204 in [3] should read “Every left ideal of R/N is an annihilator left ideal.”

References

