The normal index of a maximal subgroup of a finite group
Authors:
N. P. Mukherjee and Prabir Bhattacharya
Journal:
Proc. Amer. Math. Soc. 106 (1989), 2532
MSC:
Primary 20E28; Secondary 20D10
MathSciNet review:
952319
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For a maximal subgroup of a finite group , the normal index is defined to be the order of a chief factor where is minimal in the set of supplements of in . We obtain several results on the normal index of maximal subgroups of composite index in with which imply to be solvable, supersolvable.
 [1]
Reinhold
Baer, Classes of finite groups and their properties, Illinois
J. Math. 1 (1957), 115–187. MR 0087655
(19,386d)
 [2]
J.
C. Beidleman and A.
E. Spencer, The normal index of maximal subgroups in finite
groups, Illinois J. Math. 16 (1972), 95–101. MR 0294480
(45 #3550)
 [3]
H. C. Bhatia, A generalized Frattini subgroup of a finite group. Ph.D. thesis, Michigan State Univ., East Lansing, 1972.
 [4]
Prabir
Bhattacharya and N.
P. Mukherjee, A family of maximal subgroups containing the Sylow
subgroups and some solvability conditions, Arch. Math. (Basel)
45 (1985), no. 5, 390–397. MR 815977
(87b:20028), http://dx.doi.org/10.1007/BF01195363
 [5]
Prabir
Bhattacharya and N.
P. Mukherjee, On the intersection of a class of maximal subgroups
of a finite group. II, J. Pure Appl. Algebra 42
(1986), no. 2, 117–124. MR 857561
(88h:20028), http://dx.doi.org/10.1016/00224049(86)900745
 [6]
W.
E. Deskins, On maximal subgroups, Proc. Sympos. Pure Math.,
Vol. 1, American Mathematical Society, Providence, R.I., 1959,
pp. 100–104. MR 0125157
(23 #A2462)
 [7]
B.
Huppert, Endliche Gruppen. I, Die Grundlehren der
Mathematischen Wissenschaften, Band 134, SpringerVerlag, BerlinNew York,
1967 (German). MR 0224703
(37 #302)
 [8]
N.
P. Mukherjee, A note on normal index and maximal subgroups in
finite groups, Illinois J. Math. 19 (1975),
173–178. MR 0379665
(52 #570)
 [9]
N.
P. Mukherjee and Prabir
Bhattacharya, On the intersection of a class of maximal subgroups
of a finite group, Canad. J. Math. 39 (1987),
no. 3, 603–611. MR 905746
(88g:20046), http://dx.doi.org/10.4153/CJM19870283
 [10]
Prabir
Bhattacharya and N.
P. Mukherjee, A generalized Frattini subgroup of a finite
group, Internat. J. Math. Math. Sci. 12 (1989),
no. 2, 263–266. MR 994908
(90e:20020), http://dx.doi.org/10.1155/S016117128900030X
 [11]
N.
P. Mukherjee and Prabir
Bhattacharya, On the intersection of a family of maximal subgroups
containing the Sylow subgroups of a finite group, Canad. J. Math.
40 (1988), no. 2, 352–359. MR 941654
(89b:20053), http://dx.doi.org/10.4153/CJM19880143
 [12]
N.
P. Mukherjee and Prabir
Bhattacharya, The normal index of a finite group, Pacific J.
Math. 132 (1988), no. 1, 143–149. MR 929586
(88m:20046)
 [13]
Larry
R. Nyhoff, The influence on a finite group of the
cofactors and subcofactors of its subgroups, Trans. Amer. Math. Soc. 154 (1971), 459–491. MR 0284495
(44 #1720), http://dx.doi.org/10.1090/S00029947197102844959
 [14]
John
Thompson, Finite groups with fixedpointfree automorphisms of
prime order, Proc. Nat. Acad. Sci. U.S.A. 45 (1959),
578–581. MR 0104731
(21 #3484)
 [1]
 R. Baer, Classes of finite groups and their properties, Illinois J. Math. 1 (1957), 115187. MR 0087655 (19:386d)
 [2]
 J. C. Beidleman and A. E. Spencer, The normal index of maximal subgroups in finite groups, Illinois J. Math. 16 (1972), 95101. MR 0294480 (45:3550)
 [3]
 H. C. Bhatia, A generalized Frattini subgroup of a finite group. Ph.D. thesis, Michigan State Univ., East Lansing, 1972.
 [4]
 P. Bhattacharya and N. P. Mukherjee, A family of maximal subgroups containing the Sylow subgroups and some solvability conditions, Arch. Math. 45 (1985), 390397. MR 815977 (87b:20028)
 [5]
 , On the intersection of a class of maximal subgroups of a finite group, II, J. Pure Appl. Algebra 42 (1986), 117124. MR 857561 (88h:20028)
 [6]
 W. E. Deskins, On maximal subgroups, Proc. Sympos. Pure Math., vol. 1, Amer. Math. Soc., Providence, R.I., 1959, pp. 100104. MR 0125157 (23:A2462)
 [7]
 B. Huppert, Endliche Gruppen, I. Berlin 1967. MR 0224703 (37:302)
 [8]
 N. P. Mukherjee, A note on normal index and maximal subgroups in finite groups, Illinois J. Math. 75 (1975), 173178. MR 0379665 (52:570)
 [9]
 N. P. Mukherhee and P. Bhattacharya, On the intersection of a class of maximal subgroups of a finite group, Canad. J. Math. 39 (1987), 603611. MR 905746 (88g:20046)
 [10]
 , A generalized Frattini subgroup of a finite group, Internat. J. Math. Math. Sci. (to appear.) MR 994908 (90e:20020)
 [11]
 , On the intersection of a family of maximal subgroups containing the Sylow subgroups of a finite group, Canad. J. Math. 40 (1988), 352359. MR 941654 (89b:20053)
 [12]
 , On the normal index of a finite group, Pacific J. Math. 132 (1988), 143149. MR 929586 (88m:20046)
 [13]
 L. R. Nyhoff, The influence on a group of the cofactors and subcofactors of its subgroups, Trans. Amer. Math. Soc. 154 (1971), 459491. MR 0284495 (44:1720)
 [14]
 J. G. Thompson, Finite groups with fixedpoint free automorphisms of prime order, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 578581. MR 0104731 (21:3484)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
20E28,
20D10
Retrieve articles in all journals
with MSC:
20E28,
20D10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198909523199
PII:
S 00029939(1989)09523199
Keywords:
Solvable,
supersolvable,
solvable
Article copyright:
© Copyright 1989
American Mathematical Society
