The normal index of a maximal subgroup of a finite group

Authors:
N. P. Mukherjee and Prabir Bhattacharya

Journal:
Proc. Amer. Math. Soc. **106** (1989), 25-32

MSC:
Primary 20E28; Secondary 20D10

DOI:
https://doi.org/10.1090/S0002-9939-1989-0952319-9

MathSciNet review:
952319

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a maximal subgroup of a finite group , the *normal index* is defined to be the order of a chief factor where is minimal in the set of supplements of in . We obtain several results on the normal index of maximal subgroups of composite index in with which imply to be solvable, supersolvable.

**[1]**Reinhold Baer,*Classes of finite groups and their properties*, Illinois J. Math.**1**(1957), 115–187. MR**0087655****[2]**J. C. Beidleman and A. E. Spencer,*The normal index of maximal subgroups in finite groups*, Illinois J. Math.**16**(1972), 95–101. MR**0294480****[3]**H. C. Bhatia,*A generalized Frattini subgroup of a finite group*. Ph.D. thesis, Michigan State Univ., East Lansing, 1972.**[4]**Prabir Bhattacharya and N. P. Mukherjee,*A family of maximal subgroups containing the Sylow subgroups and some solvability conditions*, Arch. Math. (Basel)**45**(1985), no. 5, 390–397. MR**815977**, https://doi.org/10.1007/BF01195363**[5]**Prabir Bhattacharya and N. P. Mukherjee,*On the intersection of a class of maximal subgroups of a finite group. II*, J. Pure Appl. Algebra**42**(1986), no. 2, 117–124. MR**857561**, https://doi.org/10.1016/0022-4049(86)90074-5**[6]**W. E. Deskins,*On maximal subgroups*, Proc. Sympos. Pure Math., Vol. 1, American Mathematical Society, Providence, R.I., 1959, pp. 100–104. MR**0125157****[7]**B. Huppert,*Endliche Gruppen. I*, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR**0224703****[8]**N. P. Mukherjee,*A note on normal index and maximal subgroups in finite groups*, Illinois J. Math.**19**(1975), 173–178. MR**0379665****[9]**N. P. Mukherjee and Prabir Bhattacharya,*On the intersection of a class of maximal subgroups of a finite group*, Canad. J. Math.**39**(1987), no. 3, 603–611. MR**905746**, https://doi.org/10.4153/CJM-1987-028-3**[10]**Prabir Bhattacharya and N. P. Mukherjee,*A generalized Frattini subgroup of a finite group*, Internat. J. Math. Math. Sci.**12**(1989), no. 2, 263–266. MR**994908**, https://doi.org/10.1155/S016117128900030X**[11]**N. P. Mukherjee and Prabir Bhattacharya,*On the intersection of a family of maximal subgroups containing the Sylow subgroups of a finite group*, Canad. J. Math.**40**(1988), no. 2, 352–359. MR**941654**, https://doi.org/10.4153/CJM-1988-014-3**[12]**N. P. Mukherjee and Prabir Bhattacharya,*The normal index of a finite group*, Pacific J. Math.**132**(1988), no. 1, 143–149. MR**929586****[13]**Larry R. Nyhoff,*The influence on a finite group of the cofactors and subcofactors of its subgroups*, Trans. Amer. Math. Soc.**154**(1971), 459–491. MR**0284495**, https://doi.org/10.1090/S0002-9947-1971-0284495-9**[14]**John Thompson,*Finite groups with fixed-point-free automorphisms of prime order*, Proc. Nat. Acad. Sci. U.S.A.**45**(1959), 578–581. MR**0104731**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20E28,
20D10

Retrieve articles in all journals with MSC: 20E28, 20D10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0952319-9

Keywords:
Solvable,
supersolvable,
-solvable

Article copyright:
© Copyright 1989
American Mathematical Society