Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Existence of multiple periodic solutions for a semilinear evolution equation


Author: Norimichi Hirano
Journal: Proc. Amer. Math. Soc. 106 (1989), 107-114
MSC: Primary 35B10; Secondary 35K55
DOI: https://doi.org/10.1090/S0002-9939-1989-0953007-5
MathSciNet review: 953007
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider the existence of multiple periodic solutions for the problem

$\displaystyle \frac{{du}}{{dt}} + Lu = g(u) + h,t > 0,u(0) = u(T),$

where $ L$ is a uniformly strongly elliptic operator with domain $ D(L) = H_0^m(\Omega ),g:R \to R$ is a continuous mapping, $ T > 0$ and $ h:(0,T) \to H_0^m(\Omega )$ is a measurable function.

References [Enhancements On Off] (What's this?)

  • [1] S. Ahmad, Multiple nontrivial solutions of resonant and nonresonant asymptotically linear problems, Proc. Amer. Math. Soc. 96 (1986), 405-409. MR 822429 (87m:35090)
  • [2] V. Amann, Saddle points and multiple solutions of differential equations, Math. Z. 169 (1979), 127-166. MR 550724 (80j:47078)
  • [3] -, Periodic solutions for semilinear parabolic equations, Nonlinear Analysis, Academic Press, New York, N.Y., 1978, pp. 1-29. MR 499089 (80a:35009)
  • [4] V. Barbu, Nonlinear semigroups and evolution equations in Banach spaces, Noordhoff, Leyden, 1976.
  • [5] F. E. Browder, Non-linear equations of evolution, Ann. of Math. (2) 80 (1964), 485-523. MR 0173960 (30:4167)
  • [6] M. G. Crandall and A. Pazy, Nonlinar evolution equations in Banacah spaces, Israel J. Math. 11 (1972), 57-94. MR 0300166 (45:9214)
  • [7] N. Hirano, Multiple nontrival solutions of semilinear elliptic equations, Proc. Amer. Math. Soc. 103 (1988), 468-472. MR 943068 (89i:35063)
  • [8] J. J. Nieto, Periodic solutions of nonlinear parabolic equations, J. Differential Equations 60 (1985), 90-102. MR 808259 (87i:35102)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35B10, 35K55

Retrieve articles in all journals with MSC: 35B10, 35K55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0953007-5
Keywords: Periodic solution, elliptic operator, evolution equation
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society