Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hyperplane sections of weakly normal varieties in positive characteristic


Authors: Caterina Cumino, Silvio Greco and Mirella Manaresi
Journal: Proc. Amer. Math. Soc. 106 (1989), 37-42
MSC: Primary 14E05; Secondary 14E22
DOI: https://doi.org/10.1090/S0002-9939-1989-0953739-9
MathSciNet review: 953739
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that the general hyperplane sections of a weakly normal projective algebraic variety are weakly normal if the ground field has characteristic zero. This is shown to be false in positive characteristic; counterexamples can be obtained by intersecting "bad" weakly normal varieties with suitable linear spaces.


References [Enhancements On Off] (What's this?)

  • [1] W. A. Adkins, A. Andreotti and J. V. Leahy, Weakly normal complex spaces, Contributi del C.L.I. di Sc. Mat. e Appl. n. 55, Accademia Naz. dei Lincei, Roma, 1981. MR 695003 (84g:32013)
  • [2] W. A. Adkins and J. V. Leahy, A topological criterion for local optimality of weakly normal complex spaces, Math. Ann. 243 (1979), 115-123. MR 543721 (80i:32038)
  • [3] A. Andreotti and E. Bombieri, Sugli omeomorfismi delle varietà algebriche, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 (1969), 430-450. MR 0266923 (42:1825)
  • [4] M. F. Atiyah and I. G. McDonald, Introduction to commutative algebra, Addison-Wesley P.C., Reading, 1969. MR 0242802 (39:4129)
  • [5] N. Bourbaki, Algèbre, Chap. V, Hermann, Paris, 1950.
  • [6] C. Cumino, Tangent cones and analytic branches, Rev. Roumaine Math. Pures Appl. 31 (1986), 843-854. MR 872436 (88b:14005)
  • [7] C. Cumino, S. Greco and M. Manaresi, Bertini theorems for weak normality, Compositio Math. 48 (1983), 351-362. MR 700745 (84k:14036)
  • [8] C. Cumino, S. Greco and M. Manaresi, An axiomatic approach to the second theorem of Bertini, J. Algebra 98 (1986), 171-182. MR 825140 (87k:14008)
  • [9] C. Cumino and M. Manaresi, On the singularities of weakly normal varieties, Manuscripta Math. 33 (1981), 283-313. MR 612614 (82j:14002)
  • [10] S. Greco, On the theory of branches, Proc. Internat. Sympos Algebraic Geometry, Kyoto 1977, pp. 477-493. MR 578867 (81h:14011)
  • [11] E. Hamann, On the $ R$-invariance of $ R[x]$, J. Algebra 35 (1975), 1-17. MR 0404233 (53:8036)
  • [12] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326. MR 0199184 (33:7333)
  • [13] P. Valabrega and G. Valla, Form rings and regular sequenes, Nagoya Math. J. 72 (1978), 93-101. MR 514892 (80d:14010)
  • [14] M. Vitulli, The hyperplane sections of weakly normal varieties, Amer. J. Math. 105 (1983), 1357-1368. MR 722001 (85g:14062)
  • [15] H. Yanagihara, Some results on weakly normal rings extensions, J. Math. Soc. Japan 35 (4) (1983), 649-661. MR 714467 (85e:13010)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14E05, 14E22

Retrieve articles in all journals with MSC: 14E05, 14E22


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0953739-9
Keywords: Weakly normal and/or WN1 algebraic varieties, general hyperplane section
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society