Regularity of mappings of -structures of Frobenius type

Author:
Chong-Kyu Han

Journal:
Proc. Amer. Math. Soc. **106** (1989), 127-137

MSC:
Primary 58A15; Secondary 53C10

MathSciNet review:
953743

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A notion of Frobenius type for a -structure is defined. It is shown that a mapping between manifolds with a -structure of the Frobenius type is if , where the integer depends on the order of the Frobenius type. It is also shown that a -structure of finite order is of the Frobenius type.

**[1]**M. S. Baouendi, H. Jacobowitz, and F. Trèves,*On the analyticity of CR mappings*, Ann. of Math. (2)**122**(1985), no. 2, 365–400. MR**808223**, 10.2307/1971307**[2]**S. S. Chern and J. K. Moser,*Real hypersurfaces in complex manifolds*, Acta Math.**133**(1974), 219–271. MR**0425155****[3]**C. K. Han,*Analyticity of CR equivalences between some real hypersurfaces in 𝐶ⁿ with degenerate Levi forms*, Invent. Math.**73**(1983), no. 1, 51–69. MR**707348**, 10.1007/BF01393825**[4]**Chong-Kyu Han,*Regularity and uniqueness of certain systems of functions annihilated by a formally integrable system of vector fields*, Rocky Mountain J. Math.**18**(1988), no. 4, 767–783. MR**1002174**, 10.1216/RMJ-1988-18-4-767**[5]**Shoshichi Kobayashi,*Transformation groups in differential geometry*, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70. MR**0355886****[6]**Shlomo Sternberg,*Lectures on differential geometry*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0193578****[7]**S. M. Webster,*Analytic discs and the regularity of C-R mappings of real submanifolds in 𝐶ⁿ*, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 199–208. MR**740883**, 10.1090/pspum/041/740883**[8]**Robert B. Gardner,*Differential geometric methods interfacing control theory*, Differential geometric control theory (Houghton, Mich., 1982) Progr. Math., vol. 27, Birkhäuser, Boston, Mass., 1983, pp. 117–180. MR**708501****[9]**Peter J. Olver,*Applications of Lie groups to differential equations*, Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1986. MR**836734**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58A15,
53C10

Retrieve articles in all journals with MSC: 58A15, 53C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0953743-0

Keywords:
-structures,
infinitesimal automorphisms,
Frobenius type,
Lie algebras of finite order,
CR structures

Article copyright:
© Copyright 1989
American Mathematical Society