Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the monotonicity of the permanent


Author: Suk Geun Hwang
Journal: Proc. Amer. Math. Soc. 106 (1989), 59-63
MSC: Primary 15A15; Secondary 15A51
DOI: https://doi.org/10.1090/S0002-9939-1989-0960645-2
MathSciNet review: 960645
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\Omega _n}$ denote the set of all $ n \times n$ doubly stochastic matrices and let $ {J_n} = {[1/n]_{n \times n}}$. For $ A \in {\Omega _n}$, if $ {f_A}(t) = {\text{per((1 - t)}}{J_n} + tA)$ is a nondecreasing function of $ t$ on $ [0,1]$, we say that the monotonicity of permanent (abb. MP) holds for $ A$ . Friedland and Mine [3] proved MP for $ (n{J_n} - {I_n})/(n - 1)$. In [6], Lih and Wang proposed a problem of determining whether MP holds for $ {J_{{n_1}}} \otimes \cdots \otimes {J_{{n_k}}},{n_i} > 0$.

In this note, we prove MP for $ ((m{J_m} - {I_m}) \otimes s{J_s})/(m - 1)s$, extending the result of Friedland and Mine, and give an affirmative answer to the Lih and Wang's question.


References [Enhancements On Off] (What's this?)

  • [1] R. Bapat, Doubly stochastic matrices with equal subpermanents, Linear Algebra Appl. 51 (1983), 1-8. MR 699719 (84g:15024)
  • [2] G. P. Egorycev, A solution of van der Waerden's permanent problem, Kirenski Institute of Phisics, Acad. of Sci. SSSR, Preprint IFSO-13M, Krasnoyarsk 1980 (Russian). MR 602332 (82e:15006)
  • [3] S. Friedland and H. Minc, Monotonicity of permanents of doubly stochastic matrices, Linear and Multilinear Algebra 6 (1978), 227-231. MR 512998 (80b:15013)
  • [4] J. Goldwasser, Contributions to the theory of permanents, Ph.D. Thesis, Univ. of Wisconsin-Madison, 1983.
  • [5] S. G. Hwang, The monotonicity and theokvić conjectures on permanents of doubly stochastic matrices, Linear Algebra Appl. 79 (1986), 127-151. MR 847194 (87j:15017)
  • [6] K.-W. Lih and E. T. H. Wang, Monotonicity conjecture on permanents of doubly stochastic matrices, Proc. Amer. Math. Soc. 82 (1981), 173-178. MR 609645 (82d:15003)
  • [7] M. Marcus and R. Merris, A relation between permanental and determinantal adjoints, J. Austral. Math. Soc. 15 (1973), 270-271. MR 0335533 (49:314)
  • [8] H. Minc, Theory of permanents 1978-1981, Linear and Multilinear Algebra 12 (1983), 227-263. MR 688551 (84g:15008)
  • [9] -, Permanents, Encyclopedia of Math. and Its Appl., Addison-Wesley, Reading, Mass., 1978. MR 504978 (80d:15009)
  • [10] R. Sinkhorn, Doubly stochastic matrices with dominant $ p$-minors, Linear and Multilinear Algebra 5 (1977), 107-117. MR 0444688 (56:3038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A15, 15A51

Retrieve articles in all journals with MSC: 15A15, 15A51


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0960645-2
Keywords: Permanent, doubly stochastic matrix, monotonicity
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society