ON TOPOLOGICAL ENTROPY OF GROUP ACTIONS ON S^1

NOBUYA WATANABE

(Communicated by Kenneth R. Meyer)

Abstract. In this paper, we show that a surface group action on S^1 with a non-zero Euler number has a positive topological entropy. We also show that if a surface group action on S^1 has a Euler number which attains the maximal absolute value in the inequality of Milnor-Wood, then the topological entropy of the action equals the exponential growth rate of the group.

1. Introduction

The definition of the geometric entropy of a foliation was given by Ghys, Langevan and Walczak in [G-L-W] (see also Hurder [Hu]). For the case when the foliation is obtained via the suspension of a group action, it relates to the topological entropy of the group action. In this note, we study the relation between the topological entropy and the homotopical invariant of an action of a surface group.

Let $G = \text{Homeo}(S^1)$ be the group of all homeomorphisms of S^1 and let G^+ be its subgroup consisting of all orientation preserving ones. Let Σ_g denote a closed oriented surface of genus $g \geq 2$. We fix the standard symmetric generating set $\Gamma_0^g = \{\alpha_i, \beta_i, \alpha_i^{-1}, \beta_i^{-1}; 1 \leq i \leq g\}$ for the fundamental group $\Gamma^g = \pi_1(\Sigma_g)$ so that Γ^g has the presentation

$$\Gamma^g = \langle \alpha_i, \beta_i, 1 \leq i \leq g; \prod_{i=1}^{g} \alpha_i \beta_i \alpha_i^{-1} \beta_i^{-1} \rangle.$$

For a given homomorphism $\phi: \Gamma^g \to G^+$, $\chi(\phi)$ denotes the Euler number of a circle bundle associated with ϕ. The following inequality is due to Milnor [Mi] and Wood [Wo].

$$|\chi(\phi)| \leq |\chi(\Sigma_g)|,$$

where $\chi(\Sigma_g)$ is the Euler number of Σ_g.

Let $gr(\Gamma^g, \Gamma_0^g)$ denote the exponential growth rate of Γ^g with respect to Γ_0^g. Let $h(\phi, \Gamma_0^g)$ denote the topological entropy of ϕ with respect to Γ_0^g defined in Section 2.

Received by the editors October 3, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 58F11; Secondary 58F18.

Key words and phrases. Topological entropy, surface group action, Euler number.
Our main results are the following:

Theorem 1. Let $\phi: \Gamma^g \to G^+$ be a homomorphism. If $\chi(\phi) \neq 0$, then $h(\phi, \Gamma^g_0) > 0$.

Theorem 2. Let $\phi: \Gamma^g \to G^+$ be a homomorphism. If $|\chi(\phi)| = |\chi(\Sigma_\phi)|$, then $h(\phi, \Gamma^g_0) = \text{gr}(\Gamma^g, \Gamma^g_0)$.

In Section 2, we give the definition of the topological entropy of a group action and state its fundamental properties. In Section 3 and 4, we will prove Theorem 1 and 2.

2. Preliminaries

Let Γ be a finitely generated group with a finite symmetric generating set Γ_0 (i.e. if $\gamma \in \Gamma_0$, then $\gamma^{-1} \in \Gamma_0$). Let (X, d) be a compact metric space and $\phi: \Gamma \to \text{Homeo}(X)$ a homomorphism. We denote a word norm of Γ with respect to Γ_0 by $\| \cdot \|$, and set $B_n(\Gamma, \Gamma_0) = \{ y \in \Gamma; \| y \| \leq n \}$.

A new metric d_n for X is defined by

$$d_n(x, y) = \max_{\gamma \in B_n} d(\phi(\gamma)x, \phi(\gamma)y), \quad \text{for } x, y \in X.$$

Definition 1. Let n be a natural number and ε a positive number.

1. A subset $F \subset X$ is called an (n, ε)-spanning set if for any $x \in X$, there exists a $y \in F$ such that $d_n(x, y) \leq \varepsilon$.

2. A subset $E \subset X$ is called an (n, ε)-separated set if for two different points $x, y \in E$, we have $d_n(x, y) > \varepsilon$.

We set

$$s(n, \varepsilon) = \min\{ \#F; F \text{ is an } (n, \varepsilon)-\text{spanning set} \}$$
$$t(n, \varepsilon) = \max\{ \#E; E \text{ is an } (n, \varepsilon)-\text{separated set} \},$$

where $\#F$ (resp. $\#E$) denotes the cardinality of F (resp. E). Notice that $s(n, \varepsilon) \leq t(n, \varepsilon) \leq s(n, \varepsilon/2)$. Then the topological entropy of ϕ with respect to Γ_0 is defined by

$$h(\phi, \Gamma_0) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log s(n, \varepsilon)$$
$$= \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log t(n, \varepsilon).$$

The following is easy to prove.

Proposition 1. For given two homomorphisms $\phi, \psi: \Gamma \to \text{Homeo}(X)$, if there exists a continuous surjective map $f: X \to X$ such that $f \circ \phi = \psi \circ f$, then $h(\phi) \geq h(\psi)$.

In the case $\phi: \Gamma \to \text{Homeo}(S^1)$, the topological entropy of ϕ is always zero (see [Wa, Th. 7.14]). The same argument proves the following:
Proposition 2. Let $\phi: \Gamma \to G = \text{Homeo}(S^1)$ be a homomorphism. Then $h(\phi, \Gamma_0) \leq \text{gr}(\Gamma, \Gamma_0)$, where $\text{gr}(\Gamma, \Gamma_0) = \lim_{r \to \infty} (1/n) \log \|B_n(\Gamma, \Gamma_0)\|$.

Let $\phi: \Gamma \to \text{Homeo}(K)$ be a homomorphism, where K is a one dimensional manifold.

Definition 2. An orbit of $z \in K$ is called a resilient orbit if there exist $\gamma_1, \gamma_2 \in \Gamma$ such that $\phi(\gamma_1)z \neq z$ and $\lim_{n \to \infty} \phi(\gamma_2^n \gamma_1)z = z$.

Proposition 3 ([G-L-W]). If there exists a resilient orbit then the topological entropy of ϕ is positive. If the action is of class C^2, then the converse is true.

For the proof, see [G-L-W].

Remark. Hector [He] constructed a two generator subgroup of the group of C^∞-diffeomorphisms of the interval $[0, 1]$ which has positive exponential growth. He has shown that it has a subexponential growth orbit which is dense in $[0, 1]$. On the other hand, Cantwell and Conlon [C-C] has shown that if the closure of an orbit contains a resilient orbit, then it has positive exponential growth. Hence Hector’s group has no resilient orbit. Proposition 3 shows that the topological entropy of the group is zero. This is an example of a group of positive exponential growth with zero topological entropy.

3. Proof of Theorem 1

For the proof of Theorem 1, we use a criterion due to Matsumoto [Ma-1] for the vanishing of the pull back of the bounded real Euler class. Let $\phi: \Gamma \to G^+$ be a homomorphism and let e_R be the bounded real Euler class. For more detail of the bounded cohomology and the bounded Euler class, see [Gr], [Gh], [Ma-1], [Ma-2].

Proposition 4 ([Ma-1]). The following are equivalent.

1. $\phi^*(e_R) \neq 0$.

2. There exist a minimal set M of ϕ and a $\gamma \in \Gamma$ such that $\phi(\gamma)|M \neq \text{Id}$ and $\phi(\gamma)$ has a fixed point in M.

For the proof, see [Ma-1].

To prove Theorem 1, by Proposition 3, it is sufficient to prove the following:

Proposition 5. Let Γ be a finitely generated group and $\phi: \Gamma \to G^+$ a homomorphism. If $\phi^*(e_R) \neq 0$, then ϕ has a resilient orbit.

Proof. Suppose that $\phi^*(e_R)$ does not vanish. We set

$$S_\gamma = \{ x \in S^1 ; \phi(\gamma)x \neq x \}.$$

By Proposition 4, there exist a minimal set M of ϕ and a $\gamma \in \Gamma$ such that $S_\gamma \cap M \neq \emptyset$ and $S_\gamma \neq S^1$. Let $x \in S_\gamma \cap M$. Since S_γ is open, the connected component of S_γ containing x is an open interval of S^1. Notice that $\lim_{n \to \infty} \phi(\gamma^n)x$ is an endpoint of the interval, which we denote by y. Since M
is a ϕ-invariant closed set, y is in M. Since the ϕ-orbit of y is dense in M, the ϕ-orbit of y intersects the interval. Therefore the orbit of y is a resilient orbit.

Remark. Let Γ be a subgroup of G^+ which is generated by the two homeomorphisms $z \to az, z \to z + b$ ($0 < |a| < 1, b \neq 0$) on $R \cup \{\infty\} \cong S^1$. The action of Γ has a positive entropy, since the orbit of 0 is a resilient orbit.

On the other hand, the second bounded real cohomology group of Γ vanishes by the amenability of Γ ([Gr]). Therefore, the converse of Proposition 5 is not true.

4. Proof of Theorem 2

If we give Σ_g a Riemann metric of constant negative curvature, then the universal covering space of Σ_g is identified with the Poincare disk Δ and $\Gamma^g = \pi_1(\Sigma_g)$ acts on Δ by covering transformations which are isometries. This provides an action of Γ^g on $S^1 \cong \partial \Delta$. This action is called a Fuchsian action.

In [Go], Goldman has shown that a homomorphism $\phi: \Gamma^g \to \text{PSL}(2, \mathbb{R}) \cong \text{Isom}^+(\Delta)$ is a Fuchsian action if and only if $\chi(\phi) = \chi(\Sigma_g), \text{ where Isom}^+(\Delta)$ denotes the group of orientation preserving isometries on Δ.

To prove Theorem 2, it is sufficient to show it for a Fuchsian action $\tilde{\phi}$. For suppose that $\phi: \Gamma^g \to G^+$ is a homomorphism such that $|\chi(\phi)| = |\chi(\Sigma_g)|$.

Since $|\chi(\tilde{\phi})| = |\chi(\Sigma_g)| = |\chi(\phi)|$, there exists a semiconjugacy $f: S^1 \to S^1$ such that $f \circ \phi = \tilde{\phi} \circ f$ by Matsumoto [Ma-2] (for the definition of a semiconjugacy, see [Gh], [Ma-1]). Since Fuchsian action is minimal, f is continuous and surjective ([Gh]), and by Propositions 1 and 2 we have $h(\phi, \Gamma^g) \leq h(\phi, \Gamma^g) \leq \text{gr}(\Gamma^g, \Gamma^g)$.

We set

$$M_n = \sharp(B_n(\Gamma^g, \Gamma^g) - B_{n-1}(\Gamma^g, \Gamma^g)).$$

Using the fact $\text{gr}(\Gamma^g, \Gamma^g) > 0$, an easy calculation shows

$$\limsup_{n \to \infty} \frac{1}{n} \log M_n = \text{gr}(\Gamma^g, \Gamma^g).$$

We identify Γ^g with a Fuchsian group $\phi(\Gamma^g)$. We recall the definition of boundary expansion of a point on S^1 with respect to Γ^g ([B], [S]). For each $\gamma \in \Gamma^g_0$, let $C(\gamma) = \{z \in \Delta; |D_\gamma(z)| = 1\}$ be an isometric circle of γ. Then $\gamma C(\gamma) = C(\gamma^{-1})$ and the $4g$-gon R surrounded by $C(\gamma)$ ($\gamma \in \Gamma^g_0$) is a fundamental domain of Γ^g. Let the elements of Γ^g_0 be labelled by $\gamma_1, \gamma_2, \ldots, \gamma_{4g}$ so that $C(\gamma_1), \ldots, C(\gamma_{4g})$ are in anticlockwise order round R. Let P_i and Q_i be endpoints of $C(\gamma_i)$, where P_i comes before Q_i in anticlockwise order. Define $f: \partial \Delta \to \partial \Delta, f([P_i, P_{i-1}])((x) = \gamma_i x$. The f-expansion of $x \in \partial \Delta$ is the sequence $x_f = \gamma_{i_0} \gamma_{i_1} \gamma_{i_2} \ldots, \gamma_{i_n} \in \Gamma^g_0$, where $f^n(x) \in [P_{i_n}, P_{i_{n+1}}], n \in \mathbb{N}$. Let $\Sigma^+ = \{x_f: x \in \partial \Delta \subset \prod_{i=1}^{\infty} \Gamma^g_0\}$. This correspondence $\partial \Delta \to \Sigma^+$ is a bijection. Let $F(\Sigma^+)$ be the finite sequences which occur in Σ^+.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
In [S], Series has shown that each element \(\gamma \) in \(\Gamma^g \) has a unique shortest representative \(\omega_\gamma \) in \(F(\Sigma^+) \). For \(\omega = e_1 e_2 \ldots e_k \) in \(F(\Sigma^+) \), we set \(Z(\omega) = \{ x \in \partial \Delta ; x_f = e_1 e_2 \ldots e_k \ldots \} \). Then \(Z(\omega) \) is a non-empty interval on \(\partial \Delta \).

For each \(i \), let \(a_i \) be the center of \([P_i, P_{i+1}] \) and let \(\varepsilon = (1/3) \text{Min}_i |[P_i, P_{i+1}]| \), where \(| \cdot | \) denotes the length of an interval. We set

\[
E_n = \{ \gamma^{-1} a_i ; \omega_\gamma = \gamma_{i_0} \ldots \gamma_{i_n}, \gamma \in B_n - B_{n-1} \}.
\]

For each \(\gamma \) in \(B_n - B_{n-1} \), \(\gamma \) maps \(Z(\omega_\gamma) \) onto \([P_i, P_{i+1}]\), where \(\omega_\gamma = \gamma_{i_0} \ldots \gamma_{i_n} \). Therefore \(E_n \) is an \((n, \varepsilon)\)-separated set. Hence \(t(n, \varepsilon) \geq \#E_n = M_n \) and the proof of Theorem 2 is completed.

Remark. Let \(\phi : \Gamma^g \rightarrow \text{PSL}(2, \mathbb{R}) \) be a Fuchsian action. If a number \(m \) divides \(\chi(\phi) - \chi(\phi') > 0 \), then \(\phi \) lifts to the \(m \)-sheeted covering group of \(\text{PSL}(2, \mathbb{R}) \). We denote the lifted homomorphism by \(\tilde{\phi} \). Then \(\chi(\tilde{\phi}) = \chi(\phi)/m \). On the other hand, \(h(\tilde{\phi}, \Gamma^g_0) = h(\phi, \Gamma^g_0) \) by Proposition 1. Therefore the converse of Theorem 2 does not hold.

ACKNOWLEDGMENTS

The author would like to thank R. Ito, S. Miyoshi and Y. Togawa for their valuable discussions and encouragement.

REFERENCES

DEPARTMENT OF MATHEMATICS, SCHOOL OF EDUCATION, WASEDA UNIVERSITY, 1-6-1 NISHI-WASEDA, SHINJUKU-KU, TOKYO 160, JAPAN