Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Measurable homomorphisms of locally compact groups

Author: Adam Kleppner
Journal: Proc. Amer. Math. Soc. 106 (1989), 391-395
MSC: Primary 22D05; Secondary 28C10
Correction: Proc. Amer. Math. Soc. 111 (1991), 1199-1200.
MathSciNet review: 948154
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ and $ H$ be locally compact groups and $ \varphi $ a homomorphism from $ G$ into $ H$. Suppose that $ {\varphi ^{ - 1}}\left( U \right)$ is measurable for every open set $ U \subset H$. It is known under some conditions, for example, if $ H$ is $ \sigma $-compact, that $ \varphi $ is continuous. Here it is shown that this result is true without any countability restrictions on $ G$ and $ H$. The proof depends on the observation that the regular representation of $ H$ is a homomorphism.

References [Enhancements On Off] (What's this?)

  • [1] S. Banach, Théorie des operations lineaires, Garasirski, Warsaw, 1932.
  • [2] N. Bourbaki, Intégration, Hermann, Paris, 1956, 1963.
  • [3] Jacques Dixmier, Les 𝐶*-algèbres et leurs représentations, Deuxième édition. Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). MR 0246136
  • [4] V. M. Gluskov, Locally compact groups and Hilberts fifth problem, Amer. Math. Soc. Transl., Ser. 2, 15(1960), 55-94.
  • [5] E. Hewitt and K. Ross, Abstract harmonic analysis I. Springer-Verlag, New York, 1963.
  • [6] Martin Moskowitz, Uniform boundedness for nonabelian groups, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 107–110. MR 764499,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22D05, 28C10

Retrieve articles in all journals with MSC: 22D05, 28C10

Additional Information

Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society