Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Facteurs premiers de sommes d'entiers

Author: Gérald Tenenbaum
Journal: Proc. Amer. Math. Soc. 106 (1989), 287-296
MSC: Primary 11N60; Secondary 11B75
MathSciNet review: 952323
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Omega(n)$ denote the total number of prime factors of the positive integer $ n$, and set for real $ x$, $ \alpha$, and integer $ k \geq 1$,

$\displaystyle \pi_k(x) = \sum\limits_{\substack{n \leqslant x \\ \Omega (n) = k... ...n), \quad E(x,\alpha) = x^{-1}\sum\limits_{n \leqslant x} \mathbf{e}(\alpha n),$

where $ {\mathbf{e}}(t): = \exp (2\pi it)$. We establish a best possible "independence" result of the type

$\displaystyle {\pi _k}(x,\alpha )/{\pi _k}(x) = E(x,\alpha ) + O({\delta _k}(x))$

which is valid uniformly in $ x,k,\alpha $, and where the error $ {\delta _k}(x)$ tends to 0 as $ x \to + \infty $, if, and only if, $ k \sim \operatorname{log} \operatorname{log} x$. As an application we prove a recent conjecture of Erdös, Maier, and Sárközy concerning the remainder in their Erdös-Kac theorem for sum-sets.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11N60, 11B75

Retrieve articles in all journals with MSC: 11N60, 11B75

Additional Information

Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society