On tree-like continua which are homogeneous with respect to confluent light mappings

Author:
Paweł Krupski

Journal:
Proc. Amer. Math. Soc. **106** (1989), 531-536

MSC:
Primary 54C10; Secondary 54F20, 54F50

DOI:
https://doi.org/10.1090/S0002-9939-1989-0953010-5

MathSciNet review:
953010

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If is a tree-like continuum with property which is homogeneous with respect to confluent light mappings, then contains no two non-degenerate subcontinua with the one-point intersection. This is a generalization of C. L. Hagopian's result concerning homogeneous .

**[1]**J. J. Charatonik,*The property of Kelley and confluent mappings*, Bull. Polish. Acad. Sci. Math.**31**(1983), 375-380. MR**756917 (86a:54039)****[2]**J. J. Charatonik and T. Maćkowiak,*Around Effros' theorem*, Trans. Amer. Math. Soc.**298**(1986), pp. 579-602. MR**860381 (87m:54098)****[3]**C. L. Hagopian,*No homogeneous tree-like continuum contains an arc*, Proc. Amer. Math. Soc.**88**(1983), pp. 560-564. MR**699434 (84d:54059)****[4]**H. Kato,*Generalized homogeneity of continua and a question of J. J. Charatonik*, Houston J. Math.**13**(1987), 51-63. MR**884233 (88f:54065)****[5]**P. Krupski*On continua each of whose proper subcontinua is an arc--a generalization of two theroems of R. H. Bing*, Colloq. Math. Soc. János Bolyai**41**, Topology and Applications, Eger (Hungary), 1983, pp. 367-371. MR**863919****[6]**-,*On homogeneous tree-like continua*, Rend. Circ. Mat. Palermo Serie II,**18**(1988), 327-336. MR**958744 (89g:54077)****[7]**P. Krupski and J. R. Prajs,*Outlet points and homogeneous continua*, Trans. Amer. Math. Soc. (to appear). MR**937246 (90f:54054)****[8]**J. R. Prajs,*Openly homogeneous continua having only arcs for proper subcontinua*, preprint. MR**994406 (90e:54080)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54C10,
54F20,
54F50

Retrieve articles in all journals with MSC: 54C10, 54F20, 54F50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0953010-5

Keywords:
Continuum,
homogeneous,
tree-like,
property ,
confluent mapping,
Effros' theorem,
outlet point

Article copyright:
© Copyright 1989
American Mathematical Society