Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Harmonic maps defined on a manifold with a degenerate metric


Author: Jia Xing Hong
Journal: Proc. Amer. Math. Soc. 106 (1989), 471-479
MSC: Primary 58E20
DOI: https://doi.org/10.1090/S0002-9939-1989-0955999-7
MathSciNet review: 955999
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some nonexistence and existence of harmonic maps defined on a manifold with a degenerate metric are proved.


References [Enhancements On Off] (What's this?)

  • [SE] J. H. Sampson and J. Eells, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. MR 0164306 (29:1603)
  • [EL] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. MR 495450 (82b:58033)
  • [G$ _{1}$] C. H. Gu, On the Cauchy problem for harmonic maps defined on two dimensional Minkowsky space, Comm Pure Appl. Math. 33 (1980), 727-737. MR 596432 (82g:58027)
  • [G$ _{2}$] -, On the harmonic map from $ {R^{1.1}}$ to $ {S^{1.1}}$, Proceedings of the 1982 Changchun symposium on differential geometry and differential equations, Science Press, Beijing, China, 1986.
  • [G$ _{3}$] -, On partial differential equations of mixed type in $ n$ independent variables, Comm. Pure Appl. Math. 34 (1981), 333-345. MR 611748 (82d:35067)
  • [C] Y. Choquet Bruhat, Global existence theorems for hyperbolic harmonic maps, Ann. Inst. H. Poincaré 46 (1987), 97-111. MR 877997 (88b:58037)
  • [H] L. K. Hua, A talk starting from the unit circle, Science Publisher Beijing, China, 1977. MR 0578529 (58:28244)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58E20

Retrieve articles in all journals with MSC: 58E20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0955999-7
Keywords: Maximum principle, equation of mixed type, completely integrable system
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society