Some dual statements concerning Wiener measure and Baire category
Author:
K. Simon
Journal:
Proc. Amer. Math. Soc. 106 (1989), 455463
MSC:
Primary 26A18; Secondary 26A27, 28C20
MathSciNet review:
961409
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper deals with the duality between Wiener measure and Baire category on , the set of continuous functions endowed with the supremum norm. We prove that some properties shared by a residual set of continuous functions, e.g. the typical level set structure, and the existence of periodic points of order 3 hold a.e. with respect to the Wiener measure.
 [1]
S.
J. Agronsky, A.
M. Bruckner, and M.
Laczkovich, Dynamics of typical continuous functions, J.
London Math. Soc. (2) 40 (1989), no. 2,
227–243. MR 1044271
(91e:26003), http://dx.doi.org/10.1112/jlms/s240.2.227
 [2]
Andrew
M. Bruckner, Differentiation of real functions, Lecture Notes
in Mathematics, vol. 659, Springer, Berlin, 1978. MR 507448
(80h:26002)
 [3]
W. A. Coppel, Iterates of continuous maps of an interval into itself, Lectures Notes in Math., 1984.
 [4]
A. Dvoretsky, P. Erdös and S. Kakutani, Nonincreasing everywhere of the Brownian motion process, 4th Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability II, Univ. of California Press, 1961, pp. 103106.
 [5]
Hui
Hsiung Kuo, Gaussian measures in Banach spaces, Lecture Notes
in Mathematics, Vol. 463, SpringerVerlag, BerlinNew York, 1975. MR 0461643
(57 #1628)
 [6]
K. Ito and H. P. McKean, Diffusion processes and their sample paths, SpringerVerlag, Berlin, 1965.
 [7]
Samuel
Karlin and Howard
M. Taylor, A first course in stochastic processes, 2nd ed.,
Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New
YorkLondon, 1975. MR 0356197
(50 #8668)
 [8]
Tien
Yien Li and James
A. Yorke, Period three implies chaos, Amer. Math. Monthly
82 (1975), no. 10, 985–992. MR 0385028
(52 #5898)
 [9]
S. Saks, Theory of the integral, Monograf. Mat. 7, WarsawsLwow, (1937).
 [10]
S. Saks, On the functions of Besicovitch in the space of continuous functions, Fund. Math. 19 (1932), 211219.
 [11]
K.
Simon, Typical continuous functions are not iterates, Acta
Math. Hungar. 55 (1990), no. 12, 133–134. MR 1077067
(91m:26005), http://dx.doi.org/10.1007/BF01951395
 [1]
 S. J. Agronsky, A. M. Bruckner and M. Laczkovich, Dynamics of typical continuous functions (to appear in Journal of the London Mathematical Society). MR 1044271 (91e:26003)
 [2]
 A. M. Bruckner, Differentiation of real functions, Lect. Notes in Math. 659, SpringerVerlag, Berlin, 1978. MR 507448 (80h:26002)
 [3]
 W. A. Coppel, Iterates of continuous maps of an interval into itself, Lectures Notes in Math., 1984.
 [4]
 A. Dvoretsky, P. Erdös and S. Kakutani, Nonincreasing everywhere of the Brownian motion process, 4th Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability II, Univ. of California Press, 1961, pp. 103106.
 [5]
 HuiHsiung Kuo, Gaussian measures in banach spaces, Lect. Notes in Math. 463, SpringerVerlag, Berlin, 1975. MR 0461643 (57:1628)
 [6]
 K. Ito and H. P. McKean, Diffusion processes and their sample paths, SpringerVerlag, Berlin, 1965.
 [7]
 S. Karlin and H. M. Taylor, A first course in stochastic processes, Academic Press, New York, 1975. MR 0356197 (50:8668)
 [8]
 T. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly (1975) (82), 985992. MR 0385028 (52:5898)
 [9]
 S. Saks, Theory of the integral, Monograf. Mat. 7, WarsawsLwow, (1937).
 [10]
 S. Saks, On the functions of Besicovitch in the space of continuous functions, Fund. Math. 19 (1932), 211219.
 [11]
 K. Simon, Typical continuous functions are not iterates (to appear). MR 1077067 (91m:26005)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
26A18,
26A27,
28C20
Retrieve articles in all journals
with MSC:
26A18,
26A27,
28C20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198909614096
PII:
S 00029939(1989)09614096
Article copyright:
© Copyright 1989
American Mathematical Society
