Some dual statements concerning Wiener measure and Baire category

Author:
K. Simon

Journal:
Proc. Amer. Math. Soc. **106** (1989), 455-463

MSC:
Primary 26A18; Secondary 26A27, 28C20

MathSciNet review:
961409

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the duality between Wiener measure and Baire category on , the set of continuous functions endowed with the supremum norm. We prove that some properties shared by a residual set of continuous functions, e.g. the typical level set structure, and the existence of periodic points of order 3 hold a.e. with respect to the Wiener measure.

**[1]**S. J. Agronsky, A. M. Bruckner, and M. Laczkovich,*Dynamics of typical continuous functions*, J. London Math. Soc. (2)**40**(1989), no. 2, 227–243. MR**1044271**, 10.1112/jlms/s2-40.2.227**[2]**Andrew M. Bruckner,*Differentiation of real functions*, Lecture Notes in Mathematics, vol. 659, Springer, Berlin, 1978. MR**507448****[3]**W. A. Coppel,*Iterates of continuous maps of an interval into itself*, Lectures Notes in Math., 1984.**[4]**A. Dvoretsky, P. Erdös and S. Kakutani,*Nonincreasing everywhere of the Brownian motion process*, 4th Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability II, Univ. of California Press, 1961, pp. 103-106.**[5]**Hui Hsiung Kuo,*Gaussian measures in Banach spaces*, Lecture Notes in Mathematics, Vol. 463, Springer-Verlag, Berlin-New York, 1975. MR**0461643****[6]**K. Ito and H. P. McKean,*Diffusion processes and their sample paths*, Springer-Verlag, Berlin, 1965.**[7]**Samuel Karlin and Howard M. Taylor,*A first course in stochastic processes*, 2nd ed., Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0356197****[8]**Tien Yien Li and James A. Yorke,*Period three implies chaos*, Amer. Math. Monthly**82**(1975), no. 10, 985–992. MR**0385028****[9]**S. Saks,*Theory of the integral*, Monograf. Mat.**7**, Warsaws-Lwow, (1937).**[10]**S. Saks,*On the functions of Besicovitch in the space of continuous functions*, Fund. Math.**19**(1932), 211-219.**[11]**K. Simon,*Typical continuous functions are not iterates*, Acta Math. Hungar.**55**(1990), no. 1-2, 133–134. MR**1077067**, 10.1007/BF01951395

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
26A18,
26A27,
28C20

Retrieve articles in all journals with MSC: 26A18, 26A27, 28C20

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1989-0961409-6

Article copyright:
© Copyright 1989
American Mathematical Society