Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the singular rank of a representation


Author: Jian-Shu Li
Journal: Proc. Amer. Math. Soc. 106 (1989), 567-571
MSC: Primary 22E46; Secondary 22E45, 22E47
DOI: https://doi.org/10.1090/S0002-9939-1989-0961413-8
MathSciNet review: 961413
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the reductive dual pair $ ({\text{S}}{{\text{p}}_{2n}},{{\text{O}}_{p,q}})$. We prove that if $ \pi $ is a representation of $ {\text{S}}{{\text{p}}_{2n}}$ coming from duality correspondence with some representation of $ {{\text{O}}_{p,q}}$ then the wave front set of $ \pi $ has rank $ \leq p + q$. For $ p + q < n$ this implies a result stated (but not proved) by Howe.


References [Enhancements On Off] (What's this?)

  • [1] D. Barbasch and D. Vogan Jr., Unipotent representations of complex semisimple Lie groups, Ann. of Math. (2) 121 (1985), 41-110. MR 782556 (86i:22031)
  • [2] D. Barbasch and D. Vogan Jr., Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), 153-199. MR 656661 (83m:22026)
  • [3] R. Howe, Remarks on classical invariant theory (preprint). MR 986027 (90h:22015a)
  • [4] -, A notion of rank for unitary representations of classical groups, C.I.M.E. Summer School on Harmonic Analysis, Cortona, 1980.
  • [5] -, Small unitary representations of classical groups, Group Representations, Ergodic Theory, Operator Algebras and Math. Physics, Proc. Conf. in honor of C. W. Mackey (C. C. Moore, ed.), M.S.R.I., Publ. No. 6, Springer-Verlag, New York, 1986, pp. 121-150. MR 880374 (89e:22021)
  • [6] -, Wave front sets of representations of Lie groups, Automorphic Forms, Representations Theory, and Arithmetic, papers presented at the Bombay Colloquium, 1979, Tata Institute of Fundamental Research, Bombay, 1981, pp. 117-140. MR 633659 (83c:22014)
  • [7] J. Li, Theta series and distinguished representations of classical groups, Thesis, Yale University, 1987.
  • [8] -, Singular unitary representations of classical groups (preprint).
  • [9] D. Vogan Jr., Unitary representations of reductive Lie groups, Ann. of Math. Stud. no. 118, 1987. MR 908078 (89g:22024)
  • [10] H. Weyl, The classical groups, Princeton University Press, Princeton, N.J., 1946. MR 1488158 (98k:01049)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E46, 22E45, 22E47

Retrieve articles in all journals with MSC: 22E46, 22E45, 22E47


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0961413-8
Keywords: Wave front sets, reductive dual pairs
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society