Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Factoring Fourier transforms with zeros in a strip


Author: D. G. Dickson
Journal: Proc. Amer. Math. Soc. 106 (1989), 407-413
MSC: Primary 30D15; Secondary 42A85, 46F12
DOI: https://doi.org/10.1090/S0002-9939-1989-0962242-1
MathSciNet review: 962242
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: $ f$ is the Fourier transform of an infinitely differentiable function of compact support on $ {\mathbf{R}}$ if, and only if, $ f$ is entire and of exponential type with $ \left\vert {f\left( x \right)} \right\vert = O\left( {\vert x{\vert^{ - N}}} \right)$ for each $ N > 0$ as $ \vert x\vert \to \infty $ for real $ x$. In some sense, such an $ f$ has its zeros close to the real axis and has positive density of zeros $ F$ with $ n\left( r \right) = Dr + o\left( r \right)$. It is shown here that if the zeros of $ f$ are in a strip parallel to the real axis and if $ n\left( r \right) = Dr + O\left( 1 \right)$, then $ f$ is the product of two such transforms with zero densities $ D/2$ and indicators one-half of the indicator of $ f$. There is a factorable $ f$ in $ \widehat{\mathcal{D}}\left( {\mathbf{R}} \right)$ with zeros on a line and not satisfying the stricter density condition. Analogous results hold for transforms of distributions of compact support on $ {\mathbf{R}}$. The study was motivated by the outstanding problem of Ehrenpreis that asks if $ \mathcal{D}\left( {\mathbf{R}} \right) * \mathcal{D}\left( {\mathbf{R}} \right) = \mathcal{D}\left( {\mathbf{R}} \right)$.


References [Enhancements On Off] (What's this?)

  • [1] R. P. Boas, Entire functions, Academic Press, New York, 1954. MR 0068627 (16:914f)
  • [2] J. P. Demailly, Construction d'hypersurfaces irréductibles avec lieu singulier donné dans $ {{\mathbf{C}}^n}$ , Ann. Inst. Fourier 30 (1980), No. 3, 219-236. MR 597024 (82f:32007)
  • [3] D. G. Dickson, Factoring rapidly decreasing entire functions, Bull. Sei. Math. (2) 110 (1986), 335-345. MR 884213 (88e:30071)
  • [4] -, Factoring Fourier transforms, Proceedings of the International Conference on Complex Analysis and its Applications, Varna, 1987, to appear.
  • [5] -, Factoring functions of exponential type with restrictions on a line, Bull. Sei. Math. (2) 112 (1988), 77-100. MR 942800 (89d:30032)
  • [6] L. Ehrenpreis, Solutions of some problems of division IV, Amer. J. Math. 82 (1960), 522-588. MR 0119082 (22:9848)
  • [7] P. Malliavin and J. Dixmier, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sei. Math. (2) 102 (1978) 305-330. MR 517765 (80f:22005)
  • [8] L. A. Rubel, W. A. Squires and B. A. Taylor, lrreducibility of certain entire functions with applications to harmonie analysis, Annals of Math. (2) 108 (1978), 553-567. MR 512433 (80d:32003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D15, 42A85, 46F12

Retrieve articles in all journals with MSC: 30D15, 42A85, 46F12


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0962242-1
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society