On quasihereditary rings

Authors:
W. D. Burgess and K. R. Fuller

Journal:
Proc. Amer. Math. Soc. **106** (1989), 321-328

MSC:
Primary 16A66; Secondary 16A32

DOI:
https://doi.org/10.1090/S0002-9939-1989-0964453-8

MathSciNet review:
964453

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The notion of a quashereditary semiprimary ring was introduced by Cline, Parshall and Scott and was studied extensively by Dlab and Ringel. It is known that if is semiprimary of global dimension then it is quasihereditary and that there is a serial ring of global dimension 4 which is not. This paper establishes three principal results: If is quasihereditary then the Cartan determinant conjecture is true for (i.e., ); a serial ring is quasihereditary iff it has a heredity ideal; in particular, every serial ring of global dimension 3 is quasihereditary; and there is a ring (a 0-relations algebra in fact) of global dimension 3 which is not quasihereditary.

**[BFVZ]**W. D. Burgess, K. R. Fuller, E. R. Voss, and B. Zimmermann-Huisgen,*The Cartan matrix as an indicator of finite global dimension for Artinian rings*, Proc. Amer. Math. Soc.**95**(1985), no. 2, 157–165. MR**801315**, https://doi.org/10.1090/S0002-9939-1985-0801315-7**[CPS]**E. Cline, B. Parshall, and L. Scott,*Finite-dimensional algebras and highest weight categories*, J. Reine Angew. Math.**391**(1988), 85–99. MR**961165****[DR1]**V. Dlab and C. Ringel,*Heredity ideals*, typescript 1987, 11 pages.**[DR2]**-, Quasi-hereditary algebras, typescript 1987, 7 pages.**[DR3]**-,*Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring*, typescript 1987, 7 pages.**[F1]**Kent R. Fuller,*Generalized uniserial rings and their Kupisch series*, Math. Z.**106**(1968), 248–260. MR**0232795**, https://doi.org/10.1007/BF01110273**[F2]**Kent R. Fuller,*Algebras from diagrams*, J. Pure Appl. Algebra**48**(1987), no. 1-2, 23–37. MR**915987**, https://doi.org/10.1016/0022-4049(87)90105-8**[FZ]**K. R. Fuller and B. Zimmermann-Huisgen,*On the generalized Nakayama conjecture and the Cartan determinant problem*, Trans. Amer. Math. Soc.**294**(1986), no. 2, 679–691. MR**825739**, https://doi.org/10.1090/S0002-9947-1986-0825739-2**[GGZ,]**Edward L. Green, William H. Gustafson, and Dan Zacharia,*Artin rings of global dimension two*, J. Algebra**92**(1985), no. 2, 375–379. MR**778455**, https://doi.org/10.1016/0021-8693(85)90127-9**[GHZ]**E. L. Green, D. Happel, and D. Zacharia,*Projective resolutions over Artin algebras with zero relations*, Illinois J. Math.**29**(1985), no. 1, 180–190. MR**769766****[M]**Saunders Mac Lane,*Homology*, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR**1344215****[M-V]**Roberto Martínez-Villa,*Algebras stably equivalent to 𝑙-hereditary*, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 396–431. MR**607166**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A66,
16A32

Retrieve articles in all journals with MSC: 16A66, 16A32

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0964453-8

Keywords:
Quasihereditary rings,
Cartan determinant,
serial ring

Article copyright:
© Copyright 1989
American Mathematical Society