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PROBABILITY MEASURE FUNCTORS PRESERVING
THE ANR-PROPERTY OF METRIC SPACES

NGUYEN TO NHU AND TA KHAC CU

(Communicated by James West)

Abstract. Let Pk(X) denote the set of all probability measures on a metric

space X whose supports consist of no more than k points, equipped with the

Fedorchuk topology. We prove that if X e ANR then Pk(X) e ANR for

every k 6 N . This implies that for each k e N the functor Pk preserves the

topology of separable Hubert space.

1. Introduction

For a metric space X let F(X) denote the linear space of all functions

of finite support on X equipped with the Cft(A)-topology, that is, the weak

topology induced by the set Cb(X) of all bounded continuous functions on X.

Observe that the space F(X) with the Cft(A)-topology is a locally convex space.

Every function p e F(X) can be written in the form p = £\=1 mi5xi, where

m. e R for i — 1, ... , k and 8X denotes the Dirac function with support at

x, that is

*» = {„
if x = y

ifxyty.

We denote

INI = J2Kl and  suppp = {xx,::.',xk}.
i=i

Following Fedorchuk [Fe] let us say that a function p e F(X) is a probability

measure iff p(x) > 0 for each x e X and [\p\[ = 1 . p(x) is called the mass

oí p at x :

For each k e N let Pk(X) denote the set of all probability measures on X

whose supports consist of no more than k points and let /^(A) = \JT=i ^t W ■
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494 NGUYEN TO NHU AND TA KHAC CU

We shall see in §2 that the CÄ(A)-topology and the topology introduced by

Fedorchuk [Fe] are equivalent on /,00(Ar).

Let us observe that P-JJC) is a convex set in the locally convex space F(X).

Therefore /^(A) is an absolute extensor for any metric space A, hence

PggiX) e AR iff it is metrizable.

In [Fe] Fedorchuk proved that if A is a compact ANR-space then Pk(X) e

ANR for every k e N. The aim of this note is to prove Fedorchuks' theorem

without the compactness assumption on X. The compactness of A is essential

in the proof of Fedorchuk [Fe]. In our case we use a different approach which

involves a characterization of ANR-spaces established by the first author in

[N\]. Our proof uses an idea of [N\], see also [Nl, N2], however in our case

masses of probability measures lead to more complicated situations.

The proof of the main result of this note is given in §3. In §2 we describe the

Fedorchuk topology for the space /^(A) and show that Pk(X) is metrizable

for any k eN. This is the first step toward our result.

2. FEDORCHUK'S TOPOLOGY ON  PX(X)  AND THE METRIZABILITY OF  Pk(X)

In this section we describe Fedorchuk's topology on Pk(X) and prove that

Pk(X) is metrizable for any k e N. For each p0 = ¿~^ml rn^ôx® e P^X)

we define a neighborhood basis of p0 of the form (?(p0 ,UX, ... ,Uk,e) where

e > 0 and Ux,... ,Uk are disjoint neighborhoods of xx ,... ,xk, respectively.

cf(p0, C/,,..., Uk,e)

{k+l

peP^X): p = ^2p¡, supppi c £/. and
i=i

l"i°- IK-HI <e,/'= 1, ... ,/cand [[pk+x[[ < e}.

Observe that U¡, i = I, ... ,k can be taken from a fixed basis for X. The fol-

lowing fact shows that /^(A) is an absolute extensor for any metric

space A.

(2.1) Proposition. The Fedorchuk topology and the Cb(X)-topology are equiv-

alent on P^X).

Proof. For p = £*., m¡Sx¡ e PJX) and / e Cb(X) we denote £*_, «,/(*.)

by ¡fdp.
At first we assume that pn -» p = Ylk=\ miSxi in the Fedorchuk topology. Let

e > 0 and / e Cb(X) be a bounded continuous function. For each i = \, ... ,k

we take a neighborhood U¡ of x¡ such that [f(x) - f(x¡)\ < (l/3/c)e for

every x € U¡, i = 1, ... ,k. Since pn —> p in Fedorchuk's topology there

is an «0 e N such that for every « > «0 we have \m( - \[p'n\[\ < e/3Mk for

/ = 1, ... ,k and  ||^+1|| < ie, where M = sup{|/(x): x e X}, Uk+X =

X\(jk=x Ui and p'n = p„[Ui-, i - 1, ... ,k + 1. Then for every « > «0 we

obtain | / f dpn - / f dp[ <e. Therefore pn —» p in the Cè(A)-topology.
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PROBABILITY MEASURE FUNCTORS 495

Conversely, assume that pn —> p = ¿~2i=i mi6xi in the C¿(A)-topology. Let

:,UX, ... ,Uk,s) be a neighborhood of p in the Fedorchuk topology. Take

a Urysohn function /0: A -» [0,1] such that /0|A\uti ^ = l and /nC*,) = °
for i — \, ... ,k . Since / f0dpn -+ / f0dp we infer that there is an n0e N

such that setting p'n = pJU^ i = 1, ... ,k and pk+i = ¿uJAxU^, [/, we

obtain

(1) ll^+1||< U for every « > «0.

For each i = 1, ... ,k let /¡: A —► [0,1] be a Urysohn function such that

ft | U¡ — 1 and ^ | C/. = 0 for / ^ I. Since / fidpn —y f f¡dp we infer that
there is an ni e N such that for every « > «. we have

< x£       for i = 1^11 + / fidp-mi
Mut.W

/"      /^<K+,||    fcrz-i,:..,*
/a-\u*_,(/,

Since

'Auf.,-/

from ( 1 ) we get |[\p'n|| - miJ < ¿e + ¿e = e for i = I, ... ,k . Consequently,

taking « = max{m(, i = 0, ... ,k} we obtain pn e cf(p ,UX, ... ,Uk,e) for

every « > « .

The proposition is proved.

Now we shall prove the main result of this section.

(2.2) Theorem.  Pk(X) is metrizable for any keN.

The proof of Theorem 2.2 is based on the following fact due to Frink [Fr],

see also [M].

(2.3) Theorem [Fr]. A Tx-space X is metrizable if and only if the following

condition holds:
(Fr) For each x e X there exists a neighborhood basis {Un(x)}'^>=x such that

if Un(x) is given there exists an m = m(x,n) such that Um(y) n Um(x) ¿ 0

implies UJy)cUn(X).

Proof of Theorem 2.2. Obviously Pk(X) is a r,-space. Thus by Theorem 2.3

it suffices to verify the condition (Fr).

For each p — J29¡=\ n%jSx¡ e Pk(X), q < k we define a neighborhood ba-
sis {^„(ß)}^ satisfying the condition (Fr). For each i = 1, ... ,q we take

{Un(x¡)}^=l suchthat

(2) diam Un(xt) < ^ min{2~" , dist(U"(xj), Un(x})) i ± j}

(3) {U"(Xj)} satisfies the condition (Fr).

We put

cfn(p)=c?(p,U"x,...,U"k,en(p))
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496 NGUYEN TO NHU AND TA KHAC CU

where U" = Un(x¡), i = I, ... ,q and sn(p) < min{2~" ,m¡,i = 1, ... ,q}.

Let us show that {(fn(p)}'^=x satisfies (Fr).

Given tfn(p). Since en(y) < 2~" for every y e Pk(X) there exists an m e N

such that

(4) em(y)< ^miníej/í), m,i-l,... ,q} for every y ePk(X).

We shall prove that m(p,n) = max{«i,m(xi,«), i = I, ... ,q} satisfies the

desired property of (Fr).

Assume that c?n(y) = cfjy,Vxm , ... ,Vrm ,em(y)) with cfjy) ncfjp) ¿ 0.

Take 8 e cfjy)ncfjp) and write 0. = 6\U™, i = 1,... ,q and 0?+1 =

ölx\u« ,t/- ' 4 = SUPPÖ, -  » = 1 ,--.,<? + 1 -   Since ||0,.|| > m| - em(/i) >

mi ~ \mi ~ \mi > em(^) ' l: = I ''•' >Q we mier tnat f°r every i < q there

exists at least j e{\, ... ,r} such that AinVj^0. Let

C7, = U{F:Fn^^0}, í = 1,...,9;G^1=u|f;:^cA'\IJ^.|.

Since Ai c ¡7,m from (3) it follows that

(5) C7,c [/"for every i=l,...,</.

We shall show that cfm(y) c cfn(p). For every <y e ^M(?) we denote et)< =

w | G; for t = 1, ... ,q + 1 ; mt, = coi [ V} for V} C G, ; 0,} = 0, | F. for

V. c C7,. Since co, 8 ecfjy) it follows that ||KJ| - ||0,.J| < 2em(y). Note

that CardO' : VjCG¡}<r<k. From (4) we obtain

(6)       HKii -110,111 < ¿2 HKjll - llalli < 2keJy) < \enip)
VjCG,

for every i = 1, ... , q + 1 . Hence

HKII - m¡\ < HKII - ||0,||| + ||0, - «2,|| < ¿en(p) + sjp) < en(p)

for every i = \, ... ,q and by (6) we have

K+iII % °q+i t 2E"{ß) - £'"(//) + 2£"{ß) < £"iß)-

Consequently from (5) we infer that co e t?n(p).

This completes the proof of Theorem 2.2.

3. The results

Our result in this note is the following

(3.1)    Theorem. If X e ANR then Pk(X) e ANR for each k € N.

As a consequence of Theorem 2.1 we get
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(3.2) Corollary.  Pk(/2) s /2 for each k € N.

Here /2 denotes separable Hubert space, and X = Y means A is homeo-

morphic to Y.

Proof. Since Pk(/2) e AR the assertion follows from a result of [DT].

Let {%n} be a sequence of open covers of a metric space A and let % =

lJ„eN ftn . By JIT\$t) we denote the nerve of ^. We write K < {%n} iff AT is
a subcomplex of Jf(í¿) and for each simplex a e K we have a c %n U ̂ n+1

for some n e N. We write

A(ct) = max{« eN:ac WH V&„+1}.

The proof of Theorem 3.1 uses the following fact which is a slight modifica-

tion of a charcterization of ANR-spaces given in [Nl].

(3.3) Theorem [Nl]. A metric space X e ANR if and only if there exists a

sequence of open covers {2¿n} of X such that for any K < {1/n} and for any

selection f:K°—yX (i.e., f(U) e U) there is a map g: K —► A such that if

{an} is a sequence ofsimplices of K for which f(on) —► x0 e X as N(on) —► oo

then we have g(o~n) —* x0.

Here we say that a sequence {An} of subsets of a metric space A tends to

a point x0e X iff diam(^w u {xQ}) -* 0.

Note that the proof of the characterization theorem of ANR-spaces given in

[Nl] proves also Theorem 3.3.

Proof of Theorem 3.1. The remaining part of this section is devoted to the proof

of our main result. We shall verify the conditions of Theorem 3.3 for Pk(X).

Assume that A is an ANR. Since every metric space can be embedded isomet-

rically as a closed subset of a normed space, see [BP], by the ANR-property

of A without loss of generality we may assume that A is an open subset of a

normed space.

For each « e N we take an open cover Wn of A such that 3T ( -< Wn and

diam W < 2~" for each W e Wn . Put W = (J~, WH . We shall assume that

the Fedorchuk topology of Pk(X) is induced by W .

For each « e N we take a cover "Vn of A consisting of open convex sets

such that

(7) conv V <Wn     for each V e St ̂  ;

(8) K+i<<rn     for each «eN.
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498 NGUYEN TO NHU AND TA KHAC CU

Set

(9) £„ = {cf(p ,Ux,...,Uq, 2~") [Ui&Tn, dist(i/,, Uj) > 3.2

for U¡ ¿ Uj and min{w,.,i = I, ... ,q} > (k + 1)*2~"} ,
k-

Vi=cf(p¡, UÍ,...,U-{1), e)e&, p^T^m'âx], x) e U), j = 1,

% = [j % *aéW = \J îtn.
i>n n=l

Observe that <%n is an open cover of Pk(X) for every « e N.

Note that for each simplex a e Jf(%f) we have a = (Vx, ... ,VD), where

#(/); i = 1,... ,p and f|f=i ^ 7a 0- Obviously we may assume that Vi e

&n{t) with «(1) < «(2) < ••• < n(p). Let us put F. = {U[, ... ,&q(i)} for

i=l.p. Now define

(10)

A(a) = ¡L = {[/'} \U*eF,,  f) D4 ¿0,  f| C/'n U = 0 for C/ £ L
{ t/'€L t/'6L

(3.4)    Lemma.  CardA(a)<k.

Proof. In fact we shall prove that Card A(a) = q(p) < k. From (9) it follows

that every U e F belongs to at most one member L e A(a). Therefore

it suffices to establish that for every L e A(a) there is a U e F such that

U eL. This follows from the following fact which is a crucial step in the proof

of our result.

(3.5) Fact. If m'jß, > (k + 1) e, where e = max{e, | i = 1,... ,p} , then for

each /' t¿ i there exists Ulj{i), j(i) < q(i), such that fYj=x t/,,„ ^ 0.

Proof. Let p e fl? . ^ with // = £^=1 w,f5x , r < k . For simplicity we assume

that 7=1. Since /i € Fj it can be written in the form p = £*!, /¿,', where

//,' = /* | U¡ , i = 1, ... ,q(\), and p\(X)+x = ¿ | *\UÏÏ U¡ . Observe that

?(!)+! r

ii/WiH<r"(,)^e and ini= E iia*¡ii = 5>« = 1-
1=1 (=1

Write
«(i)

H = £WK"        *í"e£tf.        1 = 1,... ,9(1).
<=i

Since peVx we infer that |||/i](1)|| - mj(1)| < 2""(1) < e . Therefore by (9)

(11) ||/i](1)|| > m](1) - 2-"(1) > (* + l)ke -e = ((k+ \)k - l)e.

We write

4(1) = £ WX;.       *J e um for z = 1, ... ,s.
i=i
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Then we have ||//](1)|| = £/=■ m\ ■ Put ^1 = supp/i](1).

(3.6) C/a/m. Let F2 = ¿f(//2, U2, ... , U2   , e2). Then there exists j(2) < q(2)

suchthat A, nU2, ¿0.

Proof. Write p = £?12,)+', where p2 = p[ U2, i = I, ... , q(2), and p2q(2)+x =

// | ., ,,(2)  £/,2.   Assume to the contrary that Ax C\U2 = 0  for every  i =

1, ... ,q(2). Then we have A{ c supp/i^(2)+1 .

Since p e V2, it follows that ||/*{(1)|| = [\p [ Ax[\ < ||//|supp^(2)+1|| < e2 < s

which contradicts (11), so the claim is proved.

Denote 1(2) = \i e {1, ... ,q(2)} [U2CiAx¿0}, B(2) = U,e/(2) Uf , and

A2 = AX nfi(2). Since ^,\Í"2 C A^J?!2,' £/2 it follows that \\p M,\22|| < e2 <
e . Therefore from ( 11 ) we get

||// | A2\\ > \\p \AX[\- \\p | AX\A2[[ >((k+\)k -\)e-e> k(k + l)k~le.

Since Card/(2) < k there exists a 7'(2) e 7(2) such that \\p \ Ail U2{2)\\ >

(k + 1 ) ~ e. Let us put A2 = A2 n i/.(2). Continuing this process we get a

finite sequence A, D /42 D • • z> j4 . Since Card A, < /c we infer that for

any p e N, the family {^ !, ... , ̂  }  consists of at most k different sets.

Therefore we have [\p | A \[ > (k + 1) ~( _1)e = (k + l)e > 0. In particular we

get njL, U)w D Ap ¿ 8k
This proves 3.5.

Now we are already in a position to complete the proof of Theroem 3.1.

Assume that K < {%n} . Let f:K°-y Pk(X) be a selection. For each V =

¿f (// ,UX, ... , Uq , e) e K° we put £0(K) = p . Assume that a = (Vx, ... ,Vp) e

K with

V( = cf(U¡ ,U'X,..., &q(X) ,£,.) € yB(fl ,       (see (9)),

and «(1) < «(2) < •■• < n(p). Then fl?=1 K/0. Observe that /z, can be
written in the form

p; =  53 w(C/)^(t/)
C6/7,

where Tv = {U'x, ... ,Uq{j)}p=x . As we have seen, for every Up e F there

exists a unique L = L(UP) e A(a) such that Up e L. For every Í7 g F¡ we

put /(t/) = {;' | (Up, C/) c £(£/?)}. We shall define for each i= I, ... ,p a

sequence {m'j,x'j}q(px  as follows: put

k¡={xp,        if L(Up)nFi = 0,

Xj    \x(U),   ifUeL(Up)nFr

Note that x'j is well defined, since L(Up)nF¡ consists of at most one element

for every Up e F   and for every i = I, ... ,p .
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Now we put rhj = 0 if L(UP) n F¡ = 0, and if L(UP) nF^0 we define

rh'j by the following equalities:

in.      m\, .
¿2  m'=m(U),       ^ = _£ for ally,/€/(T7)

m¡      m¡,

Then /z, can be written in the form

q(p)

^ = XXá*;       fori=\,...,p.

We now define ga: a —> Pk(X) as follows:  For each x e a we have x —

E?=i W , /,. > 0 and Et, A,. = 1. We put

i(f)

#,(*) = EmA,

where
p        . p .

x, = y^A.Jc'.   and   w, = y^A,w'.
(=1 (=1

for every j = I, ... ,q(P). Observe that by (7), x, is well defined. Now

9(p) q(p) p p      q{p)

j=\ j=l   (=1 ,= 1 ;=1

= ¿A,.^m(L/) = ¿A¡ = l.

i=i     ueF, ¡=i

Therefore ga(x) e Pk(X).

It is easy to see that for every a , rr' e K we have gCT | a n cr' = g , [ a n er'

and gCT | a0 = g0 . Therefore the family {ga}a€K induces a map g: K -+ 7^ (A)

such that g | A0 = g0 .

We show that {crn} satisfies Theorem 3.3. Assume that {er,,} is a sequence

of simplices of K such that f(an) —* p0 e Pk(X) as N(an) —► cc.

Let V = cf (p0, Wx, ... ,Wq, e) be a neighborhood of p0 = J2%\ w°^° »

where Wi e W for i = I, ... ,q are disjoint neighborhoods of x¡ , i =

1,... ,q, respectively.   Since f(an) —> p0 and N(an) —y co, we infer that

#(0 -+ ßo ■
Note that by (7), (8), and the definition of g, there is an «0 e N such that

if N(an) > «0 and x e an , then we have

9+1

*(*)»S><v*)"'
1 = 1
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where pt(x) = g(x) \ W¡t i = 1.q, pq+x = g(x) \ X\{Jqi=x Wt, |m° -
||/z,.(x)||| < e for every i= 1,... ,q, and ||/t(x)i+1|| < 8.

Therefore g(an) —► p0 as N(an) —► oo. Consequently by Theorem 3.3 we

conclude that Pk(X) is an ANR. This completes the proof of the theorem.
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