Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Automorphic-differential identities in rings


Author: Jeffrey Bergen
Journal: Proc. Amer. Math. Soc. 106 (1989), 297-305
MSC: Primary 16A72; Secondary 16A12
DOI: https://doi.org/10.1090/S0002-9939-1989-0967482-3
MathSciNet review: 967482
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a ring and $ f$ an endomorphism obtained from sums and compositions of left multiplications, right multiplications, automorphisms, and derivations. We prove several results relating the behavior of $ f$ on certain subsets of $ R$ to its behavior on all of $ R$. For example, we prove (1) if $ R$ is prime with ideal $ I \ne 0$ such that $ f(I) = 0$, then $ f(R) = 0$, (2) if $ R$ is a domain with right ideal $ \lambda \ne 0$ such that $ f(\lambda ) = 0$, then $ f(R) = 0$, and (3) if $ R$ is prime and $ f({\lambda ^n}) = 0$, for $ \lambda $ a right ideal and $ n \geq 1$, then $ f(\lambda ) = 0$. We also prove some generalizations of these results for semiprime rings and rings with no non-zero nilpotent elements.


References [Enhancements On Off] (What's this?)

  • [1] J. Bergen and S. Montgomery, Smash products and outer derivations, Isr. J. Math. 53 (1986), 321-345. MR 852484 (87i:16065)
  • [2] L. Chung and J. Luh, Nilpotency of derivations on an ideal, Proc. Amer. Math. Soc. 90 (1984), no. 2, 211-214. MR 727235 (85c:16048)
  • [3] C. Lanski, Derivations which are algebraic on subsets of prime rings, Comm. Alg. 15 (1987), no. 6, 1255-1278. MR 882952 (88g:16037)
  • [4] A. Leroy and J. Matczuk, Derivatations et automorphismes algebriques d'anneaux premiers, Comm. Alg. 13 (1985), no. 6, 1245-1266. MR 788761 (87b:16036b)
  • [5] S. Montgomery, Automorphism groups of rings with no nilpotent elements, J. Alg. 60 (1979), no. 1, 238-248. MR 549109 (81j:16040)
  • [6] K. Goodearl and R. Warfield, Primitivity in differential operator rings, Math. Z. 180 (1982), no. 4, 503-523. MR 667005 (83k:13018)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A72, 16A12

Retrieve articles in all journals with MSC: 16A72, 16A12


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0967482-3
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society