Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Dimensions and measures of quasi self-similar sets


Author: K. J. Falconer
Journal: Proc. Amer. Math. Soc. 106 (1989), 543-554
MSC: Primary 58F12; Secondary 28A75
DOI: https://doi.org/10.1090/S0002-9939-1989-0969315-8
MathSciNet review: 969315
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that sets with certain quasi self-similar properties have equal Hausdorff and box-packing dimensions and also have positive and finite Hausdorff measure at the dimensional value. A number of applications of these results to particular examples are given.


References [Enhancements On Off] (What's this?)

  • [1] T. Bedford, Dimension and dynamics for fractal recurrent sets, J. London Math. Soc. (2) 33 (1986), 89-100. MR 829390 (87g:28004)
  • [2] R. Bowen, Hausdorff dimension of quasi-circles, Pub. Math. I.H.E.S. 50 (1979), 11-25. MR 556580 (81g:57023)
  • [3] K. Falconer, The geometry of fractal sets, Cambridge Univ. Press, Cambridge, England, 1985. MR 867284 (88d:28001)
  • [4] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747. MR 625600 (82h:49026)
  • [5] B. B. Mandelbrot, The fractal geometry of nature, W. H. Freeman, San Francisco, Ca., 1982. MR 665254 (84h:00021)
  • [6] J. McLaughlin, A note on Hausdorff measures of quasi-self-similar sets, Proc. Amer. Math. Soc. 100 (1987), 183-186. MR 883425 (88d:54054)
  • [7] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-74. MR 633256 (84d:28013)
  • [8] D. Rand, University and renormalisation in dynamical systems in New directions in dynamical systems, London Math. Soc. Lecture Notes 127 (1988), 1-56. MR 953969 (89j:58082)
  • [9] D. Ruelle, Bowen's formula for the Hausdorff dimension of selfsimilar sets, in Scaling and self-similarity in physics-renormalization in statistical mechanics and dynamics, Progr. Phys. 7 (1983). MR 733478 (85d:58051)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F12, 28A75

Retrieve articles in all journals with MSC: 58F12, 28A75


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0969315-8
Keywords: Dimension, fractal, self-similar set, repeller
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society