CONTINUITY PROPERTIES OF THE SPECTRUM OF OPERATORS ON LEBESGUE SPACES

BRUCE A. BARNES

(Communicated by John B. Conway)

Abstract. Fix $1 < p < s < \infty$. Let $T_x, x \in [p, s]$, be the collection of bounded linear operators on the Lebesgue spaces L^x determined by some fixed operator T. This paper concerns continuity properties of the map $x \rightarrow \sigma(T_x)$.

1. Introduction

Let Ω be a nonempty set, and let μ be a σ-finite measure on Ω. If $1 \leq p \leq \infty$, then let L^p denote the usual Lebesgue space $L^p(\Omega, \mu)$ with the usual p-norm. Now fix p and s with $1 \leq p < s \leq \infty$. Let $B_{p,s}$ be the algebra of all linear operators $T: L^p \cap L^s \rightarrow L^p \cap L^s$ with the property that T is continuous on $L^p \cap L^s$ with respect to both the p-norm and the s-norm. The algebra $B_{p,s}$ is a Banach algebra which is studied in [2]. Also, some applications involving $B_{p,s}$ can be found in [3]. If $T \in B_{p,s}$, then by the Riesz Convexity Theorem [6, Theorem 11, p. 525] for each x in the interval $[p, s]$ the linear operator T has a unique extension to a bounded linear operator T_x on L^x (in the case where $s = \infty$, T_∞ is a bounded linear operator on the closure of $L^p \cap L^\infty$ in L^∞). Let $\sigma(T_x)$ and $r(T_x)$ denote the spectrum and spectral radius of this extension. It is well known that $\sigma(T_x)$ can be different for different x in $[p, s]$. An example of this phenomenon is given in [4]: Let $\Omega = (0, \infty)$ and μ be the Lebesgue measure. Take T to be the Cesàro operator, so

$$T_y(f)(t) = t^{-1} \int_0^t f(x)dx \quad (f \in L^y),$$

$1 < y \leq \infty$. Then $\sigma(T_y)$ is the circle with center and radius $(2(1 - y^{-1}))^{-1}$. Note that $\sigma(T_y)$ varies continuously in y in this case.

In this paper we study continuity properties of the map $y \rightarrow \sigma(T_y)$. A key theorem here is that for $T \in B_{p,s}$, the function $y \rightarrow r(T_y)$ is continuous on the open interval (p, s) (it need not be continuous on $[p, s]$). A number of other continuity results are derived using this basic theorem as a tool.

Received by the editors July 26, 1988.

Key words and phrases. Linear operator, spectrum, spectral radius.
There are only a few examples in the literature where $\sigma(T_x)$ is specifically computed and this set is different for different values of y. Specific examples where this occurs can be found in [4], [5], and [7]. Next we give a number of additional examples.

Example 1. Let Ω be the positive integers, and let μ be the measure with

$$\mu(k) = \frac{1}{k!} \quad (k \geq 1).$$

For $1 \leq p < \infty$, let T_p be the linear operator on $l^p(\mu)$ defined by $T_p(\{a_k\}) = \{b_k\}$ where $b_k = (k + 1)^{-1} a_{k+1}$, $k \geq 1$. Also, let T_∞ act on c_0 by the same rule.

Note. For $1 < p \leq \infty$, T_p is compact and $\sigma(T_p) = \{0\}$.

Proof. Fix p, $1 < p < \infty$. Define M_n on $l^p(\mu)$ by $M_n(\{a_k\}) = \{b_k\}$ where $b_k = a_k$ for $1 \leq k \leq n$, and $b_k = 0$ for $k > n$. For $\{a_k\} \in l^p(\mu)$,

$$\| (T_p - M_n T_p) \{a_k\} \|^p_p = \sum_{k=n+1}^{\infty} \frac{1}{k!} [(k + 1)^{-p} a_{k+1}]^p \leq (n + 2)^{1-p} \| \{a_k\} \|^p_p.
$$

Therefore

$$\| T_p - M_n T_p \|_p \leq (n + 2)^{p-1} \rightarrow 0$$
as $n \rightarrow \infty$. This proves T_p is compact. A similar computation shows that T_∞ is compact.

Now it is easy to see that the operator $M_n T_p$ is nilpotent, so $\sigma(M_n T_p) = \{0\}$ for $n \geq 1$. Since T_p is compact, this implies $\sigma(T_p) = \{0\}$ [8, Theorem 3].

Now we consider the case where $p = 1$. Let l^1 denote the usual sequence space (the L^1-space of the positive integers with respect to counting measure). Define an isometry $W_1 : l^1 \rightarrow l^1(\mu)$ by $W_1(\{a_k\}) = \{c_k\}$ where $c_k = k! a_k$, $k \geq 1$. The isometry W_1 maps l^1 onto $l^1(\mu)$. Let B be the unilateral backward shift on l^1; $B(\{a_k\}) = \{b_k\}$ where $b_k = a_{k+1}$, $k \geq 1$. A straightforward computation shows

$$W_1^{-1} T_1 W_1 = B \quad \text{on } l^1.$$

As is well known, $\sigma(B) = D$, the closed unit disk, so $\sigma(T_1) = D$.

To summarize: in this case $T \in \mathcal{B}_{1,\infty}$, T_x is compact with $\sigma(T_x) = \{0\}$ for $1 < x \leq \infty$, while T_1 is not compact with $\sigma(T_1) = D$. The spectral radius function is given by

$$r(T_x) = 0 \quad \text{for } 1 < x \leq \infty, \quad r(T_1) = 1.$$

Example II. Let Ω be the positive integers, and let μ be the measure with

$$\mu(k) = 2^k \quad (k \geq 1).$$
Let S and B be defined on any sequence space by

$$S\{\{a_k\}\} = \{b_k\} \quad \text{where } b_1 = 0, b_k = a_{k-1} \text{ for } k > 1;$$

$$B\{\{a_k\}\} = \{c_k\} \quad \text{where } c_k = a_{k+1} \text{ for } k \geq 1.$$

Let S_p and B_p denote the operators S and B acting on the sequence space $l^p(\mu), 1 \leq p < \infty$. Let l^p be the usual L^p-space on the positive integers with counting measure. For $1 \leq p < \infty$ define $W_p: l^p \to l^p(\mu)$ by $W_p(\{a_k\}) = \{d_k\}$ where $d_k = 2^{-k/p}a_k, k \geq 1$. Then W_p is a linear isometry of l^p onto $l^p(\mu)$. Each of the following properties is established by a simple computation.

(II.1) $S^* = S$ and $B^* = B$, so $S + B$ is selfadjoint on $l^2(\mu)$;

(II.2) $W_p^{-1}S_pW_p = 2^{1/p}S$ on l^p;

(II.3) $W_p^{-1}B_pW_p = 2^{-1/p}B$ on l^p.

Now the spectrum of an operator of the form $a + bS + cB$, $a, b, c \in \mathbb{C}$, on the space l^p has been specifically computed by I. Gohberg and M. Zambitsky. This result can be found in [9, Proposition 2]. Combining this information with (II.1)–(II.3), we can compute the spectrum of any operator of the form $a + bS_p + cB_p, 1 \leq p < \infty$. We state these results for a specific operator:

Set $T_p = S_p + 2B_p \in \mathcal{B}(l^p(\mu)), 1 \leq p < \infty$. Then

(II.4) $\sigma(T_2) = \{\lambda \in \mathbb{R} : -2\sqrt{2} \leq \lambda \leq 2\sqrt{2}\}$;

(II.5) For $p \neq 2$, $p^{-1} + q^{-1} = 1(q^{-1} = 0$ when $p = 1), \sigma(T_p)$ is the set of all $\lambda = x + iy, x, y \in \mathbb{R}$, which lie inside or on the ellipse $x^2/a^2 + y^2/b^2 = 1$ where $a = (2^{1/p} + 2^{1/q})$ and $b = (2^{1/p} - 2^{1/q})$.

(II.6) $r(T_p) = 2^{1/p} + 2^{1-1/p}, 1 \leq p < \infty$.

The operator T_2 in this example is selfadjoint. In this case it is always true that when $2 \leq x \leq y$ or $y \leq x \leq 2$, then $\sigma(T_x) \subseteq \sigma(T_y)$; see [2, Theorem 4.4]. Also, the fact that $\sigma(T_p) \neq \sigma(T_2)$ for $p \neq 2$ shows that the hypothesis (4.1) in §4 of [1] cannot be omitted and still obtain the results in [1, Theorem 4.8].

2. Continuity properties

The main result of this paper concerns the continuity of the spectral radius function $x \to r(T_x)$; this result is stated in Theorem 3. On the way to proving this theorem, we derive some additional interesting continuity properties of the spectrum.

Proposition 1. Assume $T \in \mathcal{B}_{p,s}$ and $r(T_y) = 0$ for some $y \in [p,s]$. Then $r(T_x) = 0$ for all $x \in (p,s)$.

Proof. Fix $x \in (p,s)$. We may assume $x < y$. Choose z such that $z \in (p,s)$ and $z < x$. Then $\exists t \in (0,1)$ with $x^{-1} = tz^{-1} + (1-t)y^{-1}$. Applying the Riesz Convexity Theorem, we have for all $n \geq 1$

$$\|T^n_x\| \leq \|T^n_z\|t^n\|T^n_y\|^{1-t}.$$
Therefore
\[r(T_x) \leq r(T_z)^ir(T_y)^{1-i} = 0. \]

Corollary 2. Assume \(T \in B_{p,s} \) and for some \(y \in [p,s] \) \(\sigma(T_y) \) is finite. Then \(\sigma(T_x) = \sigma(T_y) \) for all \(x \in (p,s) \).

Proof. Assume \(\sigma(T_y) = \{\lambda_1, \ldots, \lambda_n\} \). Let \(q \) be the polynomial \(q(z) = \prod_{k=1}^{n}(z - \lambda_k) \). Then \(\sigma(q(T_y)) = q(\sigma(T_y)) = \{0\} \). It follows from Proposition 1 that \(\sigma(q(T_x)) = \{0\} \) for all \(x \in (p,s) \). Thus, \(\sigma(T_x) \subseteq \{\lambda_1, \ldots, \lambda_n\} \) for all such \(x \). Fix any \(x \in (p,s) \), \(x \neq y \). We may assume \(x < y \). Now \(T \in B_{x,y} \), and both \(\sigma(T_x) \) and \(\sigma(T_y) \) are finite. Then by [2, Cor. 5.2], \(\sigma(T_x) = \sigma(T_y) \).

Now we prove the main result.

Theorem 3. Assume \(T \in B_{p,s} \). Then \(r(T_x) \) is a continuous function on \((p,s)\).

Proof. If \(r(T_y) = 0 \) for some \(y \in (p,s) \), then \(r(T_x) = 0 \) for all \(x \in (p,s) \) by Proposition 1. Thus, we may assume \(r(T_x) > 0 \) for all \(x \in (p,s) \). For each \(n \geq 1 \), define
\[\phi_n(w) = n^{-1} \log(||(T^n)w||). \]

By the Riesz Convexity Theorem [6, Theorem 11, p. 525] \(\phi_n \) is a convex function on \((s^{-1},p^{-1})\). Now \(\phi_n(w) \) converges pointwise to \(\phi(w) = \log(r(T_{w-1})) \).

By hypothesis \(\phi(w) \) has only finite values, and \(\phi \) must be convex on \((s^{-1},p^{-1})\).

It follows from [10, Theorem 3.2] that \(\phi(w) \) is continuous on \((s^{-1},p^{-1})\), and thus, \(r(T_x) \) is continuous on \((p,s)\).

Concerning this result, note that Example 1 shows that \(x \to r(T_x) \) need not be continuous on the closed interval \([p,s]\).

Next we derive some consequences of the continuity of the spectral radius function. The first is a type of upper semicontinuity property for the function \(x \to \sigma(T_x) \). For \(K \) a compact subset of \(C \), let \(\hat{K} \) denote the polynomial convex hull of \(K \). E. Stout’s book [11] is a good source for information on polynomial convexity.

Theorem 4. Assume \(T \in B = B_{p,s} \) and fix \(x \in (p,s) \). Let \(U \) be an open set in \(C \) with \(\sigma(T_x) \subseteq U \). Then \(\exists \delta > 0 \) such that \(\sigma(T_y) \subseteq U \) whenever \(|y-x| < \delta \).

Proof. Suppose no such \(\delta \) exists. Then we can choose a sequence \(\{y_n\} \subseteq (p,s) \) with \(y_n \to x \) such that for each \(n \) there exists \(\lambda_n \in \sigma(T_{y_n}) \) with \(\lambda_n \not\in U \). The sequence \(\{\lambda_n\} \) is contained in the compact set \(\sigma(T_x) \), and so some subsequence converges to a number \(\lambda \not\in U \). We may assume that \(\lambda_n \to \lambda \).

Set \(K = \sigma(T_x) \), and if \(q \) is a polynomial, then let \(||q||_K = \sup\{|q(\mu)|: \mu \in K\} \). Now \(\lambda \not\in K \), so by definition there is a polynomial \(q \) such that \(|q(\lambda)| > ||q||_K = 1 \). Choose a positive integer \(n \) sufficiently large that \(|q^n(\lambda)| > 2 \). Set \(p = q^n \). Thus,
\[|q(\lambda)| > 2 \quad \text{and} \quad ||p||_K = 1. \]
Since \(r(p(T_x)) = 1 \), by the continuity of the spectral radius (Theorem 3) \(r(p(T_{y_k})) \to 1 \). Also, \(p(\lambda_k) \in \sigma(p(T_{y_k})) \) and \(p(\lambda_k) \to p(\lambda) \). This provides a contradiction since for \(k \) sufficiently large
\[
r(p(T_{y_k})) < 2 \quad \text{and} \quad |p(\lambda_k)| > 2.
\]

Next we prove a stronger upper semicontinuity property of the map \(x \to \sigma(T_x) \) which holds under the assumption that the spectrum of \(T \) in the algebra \(\mathcal{B}_p, s \) is “thin”. First we need a preliminary result that uses the continuity of the spectral radius function.

Lemma 5. Assume \(T \in \mathcal{B} = \mathcal{B}_p, s \) and \(\lambda \notin \sigma_\mathcal{B}(T) \). Then \(d(x) = \text{dist}(\lambda; \sigma(T_x)) \) is a continuous function on \((p, s) \).

Proof. For all \(x \in (p, s) \), \(((\lambda - T)^{-1})_x = (\lambda - T_x)^{-1} \). Thus since
\[
\sigma((\lambda - T_x)^{-1}) = \{((\lambda - \mu)^{-1} : \mu \in \sigma(T_x)\},
\]
it follows that for \(x \in (p, s) \)
\[
r((\lambda - T_x)^{-1})_x = \sup\{|\lambda - \mu|^{-1} : \mu \in \sigma(T_x)\} = (d(x))^{-1}.
\]
By Theorem 3 this function is continuous on \((p, s) \) which proves the lemma.

Theorem 6. Assume \(T \in \mathcal{B} = \mathcal{B}_p, s \) and that \(\sigma_\mathcal{B}(T) \) has empty interior. If \(x \in (p, s) \) and \(U \) is an open set with \(\sigma(T_x) \subseteq U \), then \(\exists \delta > 0 \) such that \(\sigma(T_y) \subseteq U \) whenever \(|x - y| < \delta \).

Proof. Suppose no such \(\delta \) exists. Then there is a sequence \(\{y_n\} \subseteq (p, s) \) such that \(y_n \to x \) and for each \(n \) there exists \(\lambda_n \in \sigma(T_{y_n}) \) with \(\lambda_n \notin U \). We may assume (by taking a subsequence if necessary) that \(\{\lambda_n\} \) converges to a number \(\mu \notin U \). Let \(\varepsilon = \text{dist}(\mu; \sigma(T_x)) > 0 \). Set \(D = \{\alpha \in \mathbb{C} : |\alpha - \mu| < \varepsilon/4\} \). Since \(\sigma(T_x) \) has no interior, we can choose \(\lambda \in D \) with \(\lambda \notin \sigma_\mathcal{B}(T) \). By Lemma 5 \(d(y) = \text{dist}(\lambda; \sigma(T_y)) \) is a continuous function on \((p, s) \). By the choices of \(\varepsilon \) and \(\lambda \), \(d(x) > \varepsilon/2 \). But since \(\lambda_n \to \mu \), we have \(d(y_n) < \varepsilon/2 \) for all \(n \) sufficiently large, a contradiction.

Next we turn to some results concerning the situation where \(\sigma(T_x) \) is disconnected or has an isolated point at some \(x \in (p, s) \). What we prove is that this property extends to all \(y \) in some neighborhood of \(x \).

We need the following technical lemma.

Lemma 7. Let \(K \) and \(J \) be compact subsets of \(\mathbb{C} \) with \(\hat{K} \) and \(\hat{J} \) disjoint. Then there exists \(U \) and \(V \), open sets with compact closure, such that

(i) \(\hat{K} \subseteq U \) and \(\hat{J} \subseteq V \); and
(ii) \(U^- \) and \(V^- \) are disjoint.

Proof. For each \(\mu \in \hat{J} \), choose a polynomial \(q_\mu \) such that \(\|q_\mu\|_K = 1 \) and \(|q_\mu(\mu)| > 3 \). Let
\[
V_\mu = \{\lambda \in \mathbb{C} : |q_\mu(\lambda)| > 3\}, \quad \text{and}
\]
\[
U_\mu = \{\lambda \in \mathbb{C} : |q_\mu(\lambda)| < 2\}.
\]
Let \(\{V_1, \ldots, V_n\} \) be a finite cover for \(\hat{J} \). For convenience, in the notation that follows the subscript \(\mu_k \) will be replaced by \(k \). Note that \(\hat{J} \subseteq \bigcup_{k=1}^n V_k \) and \(\hat{K} \subseteq \bigcap_{k=1}^n U_k \). Choose \(U \) with compact closure such that

\[
\hat{K} \subseteq U \subseteq \overline{U} \subseteq \bigcap_{k=1}^n U_k.
\]

If \(\lambda \in \overline{U} \), then \(\|q_k\|_{\overline{U}} < 2 \), so \(|q_k(\lambda)| < 2 \) for \(1 \leq k \leq n \). Thus, \(\overline{U} \subseteq \bigcap_{k=1}^n U_k \). Since \(\bigcap_{k=1}^n U_k \) and \(\bigcup_{k=1}^n V_k \) are disjoint, it follows that \(\overline{U} \) and \(\hat{J} \) are disjoint.

Now repeat the argument above with \(\overline{U} \) in place of \(J \) and \(J \) in place of \(K \). The argument proves \(\exists V \) an open set with compact closure such that \(\hat{J} \subseteq V \) and \(\overline{V} \) and \(\overline{U} \) are disjoint.

Theorem 8. Let \(T \in \mathcal{B}_{p,s} \). Assume for some \(x \in (p,s) \), \(\sigma(T_x) \) is disconnected. Then \(\sigma(T_y) \) is disconnected for all \(y \) in some neighborhood of \(x \).

Proof. Assume \(K \) and \(J \) are disjoint nonempty compact sets with \(\sigma(T_x) = K \cup J \). Then \(\hat{K} = K \) and \(\hat{J} = J \), so by Lemma 7, there exist open sets \(U \) and \(V \) with compact closure such that \(K \subseteq U \), \(J \subseteq V \), and \(\overline{U} \) and \(\overline{V} \) are disjoint. By Theorem 4 \(\exists \delta > 0 \) such that \(\sigma(T_y) \subseteq U \cup V \) whenever \(|x-y| < \delta \). Fix \(y \) with this property, and assume (without loss of generality) that \(x < y \). Then \(T \in \mathcal{B} = \mathcal{B}_{x,y} \). By [2, Theorem 5.1(4)]

\[
\sigma(T_x) \subseteq \sigma(T_y) = (\sigma(T_x) \cup \sigma(T_y)) \subseteq (\overline{U} \cup \overline{V}) = \overline{U} \cup \overline{V},
\]

where the last equality follows from [11, Lemma 29.21(b)]. Now since \(\sigma(T_x) \) has nonempty intersection with both \(U \) and \(V \), the same is true for \(\sigma(T_y) \). Then using the fact that \(S \to S_y \) is a continuous algebra monomorphism of \(\mathcal{B} \) into \(\mathcal{B}(L^2) \), it follows from [2, Theorem 4.5] that \(\sigma(T_y) \cap U \) and \(\sigma(T_y) \cap V \) are nonempty. Thus, \(\sigma(T_y) \) is disconnected.

Corollary 9. Let \(T \in \mathcal{B}_{p,s} \). Assume for some \(x \in (p,s) \) that \(\lambda_0 \) is an isolated point of \(\sigma(T_x) \). Then \(\lambda_0 \) is an isolated point of \(\sigma(T_y) \) for all \(y \) in some neighborhood of \(x \).

Proof. Set \(K = \{\lambda_0\} \) and \(J = \sigma(T_x) \setminus \{\lambda_0\} \). Choose \(U, V, \delta > 0, y, \) and \(\mathcal{B} \) is in the proof of Theorem 8. Then \(\sigma(T_x) \subseteq \overline{U} \cup \overline{V} \). Let \(Q \in \mathcal{B} \) be the spectral projection corresponding to the set \(\sigma(T_y) \cap \overline{U} \) which is a nonempty open and closed subset of \(\sigma(T_y) \). Then by the Spectral Mapping Theorem

\[
\sigma((QT)_x) = \sigma(Q_x T_x) = \{\lambda_0\}.
\]

It follows from Corollary 2 that for all \(w \in (x,y) \), \(\sigma((QT)_w) = \{\lambda_0\} \). Therefore \(\lambda_0 \) is an isolated point of \(\sigma(T_w) \) when \(x < w < y \). This argument proves that \(\lambda_0 \) is an isolated point of \(\sigma(T_w) \) whenever \(|x-w| < \delta \).

Added in proof. It has been pointed out to me that a general upper semicontinuity property of the map \(y \to \sigma(T_y) \) has been proved by I. Ya. Sneiberg in
Both Theorems 4 and 6 are special cases of this result. On the positive side, this same result implies that Theorem 8 and Corollary 9 have more general forms. Specifically, $\sigma(T_x)^A$ can be replaced by $\sigma(T_x)$ in the hypotheses of these two results without altering the conclusions.

REFERENCES

3. ——, *Essential spectrum in a Banach algebra applied to linear operators*, recently submitted.