ON THE CLASSIFICATION OF HOMOGENEOUS MULTIPLIERS BOUNDED ON $H^1(\mathbb{R}^2)$

JAMES E. DALY AND KEITH PHILLIPS

(Communicated by R. R. Goldberg)

Abstract. Necessary and sufficient conditions for Calderon-Zygmund singular integral operators to be bounded operators on $H^1(\mathbb{R}^2)$ are investigated. Let m be a bounded measurable function on the circle, extended to \mathbb{R}^2 by homogeneity ($m(rx) = m(x)$). If the Calderon-Zygmund singular integral operator T_m, defined by $T_m f = \mathcal{F}^{-1}(m \mathcal{F}(f))$, is bounded on $H^1(\mathbb{R}^2)$, then it is proved that S^*m has bounded variation on the circle, where the Fourier transform of S on the circle is $\hat{S}(n) = (-\text{sgn}(n))^{n+1}$. This implies that m must have an absolutely convergent Fourier series on the circle, and other relations on the Fourier series of m. Partial converses are also given. The problems are formulated in terms of distributions on the circle and on \mathbb{R}^2.

1. Introduction

The principal subject of this paper is classification of Calderon-Zygmund singular integrals that are bounded operators on $H^1(\mathbb{R}^2)$. These operators have kernels which are homogeneous of degree -2 and multipliers which are homogeneous of degree 0. We treat the problem in the general context of distributions. More precisely, suppose that m is a function or distribution on \mathbb{R}^2 which is homogeneous of degree 0 and let U be the distribution on \mathbb{R}^2 defined by $\mathcal{F}(U) = m$, where \mathcal{F} denotes the Fourier transform on \mathbb{R}^2. We investigate necessary and sufficient conditions on m so that U extends to a bounded operator on $H^1(\mathbb{R}^2)$. We use the definition of $H^1(\mathbb{R}^2)$ in terms of atomic decompositions, as in Coifman and Weiss [2].

A first necessary condition is that m be a bounded measurable function, for if the multiplier operator $T_m(f) = \mathcal{F}^{-1}(m \mathcal{F}(f))$ is a bounded operator on H^1, then by duality we have $T_m : BMO \to BMO$ continuously. By interpolation it follows that $T_m : L^2 \to L^2$ continuously, and hence that m must be a bounded measurable function. The problem is what additional conditions...
upon \(m \) force \(T_m \in B(H^1) \), the bounded operators on \(H^1(\mathbb{R}^2) \). We obtain necessary conditions in terms of the bounded variation of certain convolutions with \(m \). We also prove that these necessary conditions are sufficient for \(T_m \) to map \(L^p \) boundedly to \(L^p \) for \(p > 1 \). In [12], Taibleson and Weiss have shown that if \(T_m \) is in \(B(H^p) \) for \(p \leq 1 \) then \(m \) is continuous on \(\mathbb{R}^2 \setminus \{0\} \). The replacement of \(L \) by \(H^1 \) for this study is natural as it is well known that \(T_m \) is not bounded on \(L^1 \) if \(m \) is not constant. In fact, \(T_m(L^1) \) is not contained in \(L^1 \). See Stein [10, p. 42] for specifics.

In related work, Daly [4] provided a complete classification of those homogeneous multiplier operators that send atoms to molecules boundedly in \(H^p(\mathbb{R}^n) \) for \(0 < p \leq 1 \). This classification, the \(L^p \) result indicated above (see Theorem 7) and conditions found by Taibleson and Weiss [12] are the most complete sufficiency results for \(R^n \).

The corresponding extension and classification problem for homogeneous multipliers for local fields is solved in [5].

In §2 we analyze homogeneous distributions and obtain a polar decomposition for them. The results will be given for \(\mathbb{R}^n \), although in this paper we will only use the results for \(n = 2 \). The results in §2 are of independent interest, and will provide a basis for the corresponding \(H^1 \) problem in \(\mathbb{R}^n \) for \(n > 2 \).

For notational purposes we will follow Hörmander [8] as much as possible. Both [8] and Donoghue [6] contain results on homogeneous distributions. For \(H^p \) theory we follow Coifman, Taibleson, and Weiss [2, and 12].

2. **Homogeneous distributions**

Three subsets of \(\mathbb{R}^n \) play a role in our analysis: \(\mathbb{R}^n \), \(\mathbb{R}^n \setminus \{0\} \), and the unit sphere \(\sum_{n-1} \). If \(X \) is one of the three, let \(C_0^\infty(X) \) denote the infinitely differentiable functions on \(X \) having compact support. For a compact subset \(K \) of \(X \) and a nonnegative integer \(k \), let

\[
\|\phi\|_{K,k} = \sum_{|\alpha| \leq k} \sup\{|D^\alpha \phi(x)| : x \in K\}.
\]

These seminorms define the topology of \(C_0^\infty(X) \); see [8, p. 34]. The space \(D'(X) \) of distributions on \(X \) is the dual of \(C_0^\infty(X) \) with this topology. So-called test functions are elements of \(C_0^\infty(X) \). In the case \(X = \sum_{n-1} \), the space \(X \) is itself compact and so the only \(K \) needed in the above definition is \(\sum_{n-1} \); and, \(C_0^\infty(\sum_{n-1}) = C_0^\infty(\sum_{n-1}) \).

The value of \(U \) in \(D' \) at \(\phi \) is denoted \(\langle U, \phi \rangle \). A distribution \(U \) in \(D'(\mathbb{R}^n) \) or \(D'(\mathbb{R}^n \setminus \{0\}) \) is said to be homogeneous of degree \(a \), for \(a \in \mathbb{R} \), if

\[
\langle U, \phi \rangle = t^{a+n} \langle U, \phi_t \rangle
\]

where \(\phi_t(x) = \phi(tx) \) for \(t > 0 \).

If \(u \) is a distribution in \(D'(\sum_{n-1}) \), then \(u \) can be used to obtain a distribution \(U_a \) on \(\mathbb{R}^n \setminus \{0\} \) that is homogeneous of degree \(a \), in the following manner.
For $a \in \mathbb{R}$ and $\varphi \in C_0^\infty(\mathbb{R}^n \setminus \{0\})$, define U_a by

$$\langle U_a, \varphi \rangle = \int_0^\infty r^{n-1+a} \langle u, \varphi_r \rangle \, dr$$

where φ_r is the function defined on \sum_{n-1} by $\varphi_r(x') = \varphi(rx')$. As φ has compact support, the integral above converges absolutely and defines a linear functional U_a which is in $D'(\mathbb{R}^n \setminus \{0\})$. The distribution u is said to be the kernel of the distribution U_a.

If $a = -(n + k)$ and k is not a nonnegative integer, then U_a has a unique extension to a distribution \hat{U}_a in $D'(\mathbb{R}^n)$. See Hörmander [8], Theorem 3.2.3. If k is a nonnegative integer, then U_a has an extension \hat{U}_a in $D'(\mathbb{R}^n)$ if and only if $\langle U_a, x^\alpha \psi \rangle = 0$ for radial $\psi \in C_0^\infty(\mathbb{R}^n \setminus \{0\})$ and all nonnegative integer multi-indices α such that $|\alpha| = k$. To obtain this condition and hence the extension to \mathbb{R}^n, it is easy to see that we must have $\langle u, x^\alpha \rangle = 0$ for $|\alpha| = k$. If $k = 0$, this condition reduces to $\langle u, 1 \rangle = 0$. The homogeneous extension \hat{U}_a in this case is only unique up to a linear combination of the derivatives of order k of the Dirac measure δ. This is because derivatives of order k of δ are homogeneous of order $-(n + k)$ and are supported at zero. See Theorem 3.2.4 of Hörmander [8]. For the purposes of this paper, we will be interested in the case $(n, k, a) = (2, 0, -2)$ and the extension where the contribution of δ is zero.

Suppose next that $U \in D'(\mathbb{R}^n)$ is homogeneous of degree a. From Donoghue [6, p. 154], U is a tempered distribution. That is, U has a unique continuous extension to the space S of rapidly decreasing functions on \mathbb{R}^n. We will show that there is a $u \in D'(\sum_{n-1})$ for which $U = U_a$. We need the following two lemmas.

Lemma 1. If $U \in D'(\mathbb{R}^n)$ is homogeneous of degree $a \geq -n$, then U has finite order.

Proof. If $\varphi \in C_0^\infty(\mathbb{R}^n)$ and has support in the unit ball B^1, there exists a constant c and an integer N such that

$$|\langle U, \varphi \rangle| \leq c \cdot \|\varphi\|_{B^{1,N}}.$$

For any $\varphi \in C_0^\infty(\mathbb{R}^n)$, there exists $r \geq 1$ such that $\text{sup}(\varphi) \subset B^r$, the ball of radius r. Then $\varphi_{1/r}$ has support in B^1. Thus

$$|\langle U, \varphi_{1/r} \rangle| \leq c \cdot \|\varphi_{1/r}\|_{B^{1,N}} \leq c \cdot \sum_{k=0}^N r^{-k} \sum_{|\alpha|=k} \|D^\alpha \varphi\|_{\infty} \leq c \cdot \|\varphi\|_{B^r,N}.$$

As U is homogeneous of degree a, $\langle U, \varphi_{1/r} \rangle = r^{-a+n} \langle U, \varphi \rangle$. So we have

$$|\langle U, \varphi \rangle| \leq r^{-a-n} c \cdot \|\varphi\|_{B^r,N}.$$

Thus U has finite order if $a \geq -n$. (If N is the smallest integer for which (i) holds, then the order of U is N.) \qed
Lemma 2. If the distribution U is homogeneous of degree $a \geq -n$, then there exists a continuous function g and a multi-index α such that, for $\varphi \in C_0^\infty (\mathbb{R}^n)$,

$$(U, \varphi) = (D^\alpha g, \varphi) = (g, (-1)^{|\alpha|}D^\alpha \varphi).$$

Proof. From Donoghue [6, p. 106], a distribution of finite order N is an $(N+2)$ derivative of a continuous function. □

We can now state and prove the main theorem on the correspondence between homogeneous distributions on \mathbb{R}^n and $\mathbb{R}^n \setminus \{0\}$ and distributions on \sum_{n-1}.

Theorem 3. Let $a \in \mathbb{R}$.

(1) If $u \in D'(\sum_{n-1})$ and $a \neq -(n + k)$ where k is a nonnegative integer, define U for $\varphi \in C_0^\infty (\mathbb{R}^n \setminus \{0\})$ by

$$<U, \varphi> = \int_0^\infty r^{n+a} <u, \varphi> \, dr.$$

Then U is in $D'(\mathbb{R}^n \setminus \{0\})$ and has a unique extension to a distribution in $D'(\mathbb{R}^n)$ that is homogeneous of degree a.

(2) If $U \in D'(\mathbb{R}^n)$ is homogeneous of degree a and a is not of the form $-(n + k)$ for a nonnegative integer k, then there exists $u \in D'(\sum_{n-1})$ such that

$$<U, \varphi> = \int_0^\infty r^{n+a} <u, \varphi> \, dr.$$

for $\varphi \in C_0^\infty (\mathbb{R}^n \setminus \{0\})$.

(3) If $a = -(n+k)$ and k is a nonnegative integer, then (1) holds if $<u, x^\alpha> = 0$ for each nonnegative integer multi-index α with $|\alpha| = k$. In this case the extension to $D'(\mathbb{R}^n)$ is unique only up to addition of a linear combination of derivatives of order k of δ. If U in $D'(\mathbb{R}^n)$ is homogeneous of degree a as in (2), then u exists and $<u, x^\alpha> = 0$ must hold for $|\alpha| = k$.

Proof. We have proved (1). To prove (2), first suppose that $a > -n$. Then Lemma 2 applies and equality (ii) can be rewritten as

$$<U, \varphi> = \int_{\mathbb{R}^n} (-1)^{|\alpha|} g(x)D^\alpha(\varphi)(x) \, dx$$

$$= (-1)^{|\alpha|} \int_0^\infty r^{n-1} \int_{\sum_{n-1}} g(rx')D^\alpha(\varphi)(rx') \, dx' \, dr$$

$$= (-1)^{|\alpha|} \int_0^\infty r^{n-1+a} \int_{\sum_{n-1}} (r^{-a-|\alpha|} g(rx'))D^\alpha(\varphi)(x') \, dx' \, dr.$$

Consider the function $h(rx') = r^{-(a+|\alpha|)} g(rx')$. The function h is continuous on $\mathbb{R}^n \setminus \{0\}$ and, as U is homogeneous of degree a, h is homogeneous of degree 0. Thus U can be written as

(iii) $$<U, \varphi> = \int_0^\infty r^{n-1+a} <u, \varphi> \, dr$$
where \(u \) is defined by

\[
\langle u, \sigma \rangle = \int_{\sum_{n-1}} h(x') (-1)^{\alpha} D^\alpha(\sigma)(x') \, dx'
\]

for \(\sigma \in C^\infty(\sum_{n-1}) \). The derivative \(D^\alpha(\sigma) \) is defined by extending \(\sigma \) radially. Explicitly, choose a radial \(\psi \in C^\infty(\mathbb{R}^n \setminus \{0\}) \) that is identically equal to 1 on a neighborhood of \(\sum_{n-1} \), and let \(D^\alpha(\sigma)(x') = D^\alpha(\psi \sigma)(x') \). Then \(u \in D'(\sum_{n-1}) \) and \(U \) is the \(U_a \) defined by \(u \). Note that for given \(\varphi \in C^\infty_0(\mathbb{R}^n) \), the function \(\langle u, \varphi \rangle \) has compact support on \(\mathbb{R}^+ \) and is a bounded function of \(r \), so the function \(\{ r^{n-1+a} \langle u, \varphi \rangle \} \) is in \(L^1(\mathbb{R}^+) \). Hence the integral in (iii) is finite.

If \(a < -n \), then \(| \cdot |^{-a-n} U \) is a distribution in \(D'(\mathbb{R}^n \setminus \{0\}) \) which is homogeneous of degree \(-n \). Hence by Lemma 2 and the above argument there is a continuous function \(g \) on \(\mathbb{R}^n \) and a multi-index \(\alpha \) such that the function \(h \) defined by

\[
h(x) = |x|^{-(n+|\alpha|)} g(x)
\]

and the distribution \(u \) defined by

\[
\langle u, \sigma \rangle = \int_{\sum_{n-1}} h(x') (-1)^{\alpha} D^\alpha(\sigma)(x') \, dx'
\]

satisfy

\[
\langle | \cdot |^{-a-n} U, \varphi \rangle = \int_0^\infty r^{-1} \langle u, \varphi \rangle \, dr
\]

for \(\varphi \in C^\infty_0(\mathbb{R}^n \setminus \{0\}) \). The polar decomposition equality (iii) follows for \(U \).

If \(a = -(n+k) \) for a nonnegative integer \(k \) and if \(u \in D'(\sum_{n-1}) \), then the formula in (1) defines an element \(U \) of \(D'(\mathbb{R}^n \setminus \{0\}) \) which is homogeneous of degree \(a \). The extension to \(\mathbb{R}^n \) exists if \(\langle u, x^\alpha \rangle = 0 \) for all \(\alpha \) satisfying \(|\alpha| = k \). Conversely, if \(U \) is in \(D'(\mathbb{R}^n \setminus \{0\}) \) and is homogeneous of degree \(a = -(n+k) \), then the definition of \(u \) in (iv) is the same as before and (iii) holds for \(\varphi \in C^\infty_0(\mathbb{R}^n \setminus \{0\}) \). If \(U \) extends to \(D'(\mathbb{R}^n \setminus \{0\}) \), then \(\langle U, x^\alpha \varphi \rangle = 0 \) must hold for radial \(\psi \). It follows easily that \(\langle u, x^\alpha \rangle = 0 \) must hold. Hence we have proved (3).

Further remarks. The formulas in Theorem 3 hold for \(\varphi \in C^\infty_0(\mathbb{R}^n) \) if \(a > -n \) but the extensions from \(\mathbb{R}^n \setminus \{0\} \) to \(\mathbb{R}^n \) are given by limits if \(a \leq -n \). Since \(U \) is homogeneous it is also tempered and so in fact \(U \) extends continuously to \(S \) as well. It is easy to see that the formulas hold for those \(\varphi \) in \(S \) for which \(\varphi \) is zero on a neighborhood of \(0 \) and for all \(\varphi \) in \(S \) if \(a > -n \).

If \(U \) is homogeneous of degree \(a \), then the Fourier transform \(\mathcal{F}(U) \) is homogeneous of degree \(n + a \); it too is tempered. In the case \(a = -n \), \(\mathcal{F}(U) \) is homogeneous of degree 0. The element \(m \) of \(D'(\sum_{n-1}) \) corresponding to \(\mathcal{F}(U) \) as in Theorem 3, is called the multiplier of \(U \). The distribution \(U \) defines in the usual way an operator \(T_m \) on \(C^\infty_0(\mathbb{R}^n) \) by

\[
T_m(\varphi)(x) = \langle U, \tau_x \varphi \rangle
\]
where τ_x is translation by $-x$ and $\phi(x) = \phi(-x)$. Since U is tempered, this formula extends to $\varphi \in S$. This paper concerns the extension of T_m from S as an operator on Hardy spaces.

3. Multiplier operators

In the remainder of this paper we will be concerned only with distributions on \mathbb{R}^2 that are homogeneous of degree -2. The distribution u in $D'(\sum_1)$ plays the role of the usual kernel in the construction of Calderon-Zygmund singular integrals. We let $\sum_1 = T$, the circle. We will always assume that U has no delta measure component (recall that δ is homogeneous of degree -2). The Fourier transform of U is homogeneous of degree 0 and so there is a unique distribution m on T satisfying

$$\langle \mathcal{F}(U), \varphi \rangle = \int_0^\infty \langle m, \varphi_r \rangle r \, dr.$$

In this case the relationship between u and m can be stated explicitly, in terms of the Fourier transform on the circle T, as

$$u(n) = \frac{n \text{sgn}(n)}{2\pi i} m(n),$$

for $n \neq 0$, where $\text{sgn}(n)$ denotes the sign of n.

We give two proofs of (1). From Stein [10], for dimension 2, m can be computed from u on T by

$$m = -[(i\pi/2) \text{sgn}(|\cdot|) + \log|\cos(\cdot)|] * u.$$

A straightforward computation gives, for $n \neq 0$,

$$-[(i\pi/2) \text{sgn}(|\cdot|) + \log|\cos(\cdot)|] u(n) = 2\pi i \text{sgn}(n) \frac{\cos(n) - (n+1)}{n}.$$

Expression (1) follows immediately.

The formula (1) can also be derived by directly computing the Fourier transform of the distribution $e^{in\theta} / |\cdot|^2$ in $D'(\mathbb{R}^2\setminus 0)$ using the methods of the proof of Theorem 5, infra. We give this derivation, which is heuristic in that existence of certain integrals needs to be established.

Let $\chi_n(\theta) = e^{in\theta}$, $n \neq 0$. Each $\chi_n \cdot |\cdot|^2$ for a real is locally integrable on $\mathbb{R}^2\setminus\{0\}$ and so defines a distribution. Let $\varphi \in C_0^\infty(\mathbb{R}^2\setminus 0)$. Using Theorem 3 and letting $y = se^{i\theta}$, we have

$$\langle \mathcal{F}(\chi_n |\cdot|^2), \varphi \rangle = \langle \chi_n |\cdot|^2, \mathcal{F}(\varphi) \rangle = \int_0^{2\pi} \int_0^{2\pi} \int_{\mathbb{R}^2} \varphi(se^{i\theta}) e^{-i <se^{i\theta},re^{i\theta}>} \, dy \, d\theta \, dr \int_0^{2\pi} \int_0^{2\pi} \int_{\mathbb{R}^2} \varphi(se^{i\theta}) e^{-i <se^{i\theta},re^{i\theta}>} \, d\theta \, dr \, dy.$$

The inner-product in \mathbb{R}^2 can be rewritten using $\langle e^{i\beta}, e^{i\theta} \rangle = \cos(\theta - \beta)$. The θ-integral is a Bessel function, namely

$$\int_0^{2\pi} e^{in\theta} e^{-i rs \cos(\theta - \beta)} \, d\theta = 2\pi e^{in\beta} (-i)^n J_n(rs).$$
where \(J_n \) is the \(n \)th-Bessel function. Using the multiplicative invariance of the measure \(r^{-1} \, dr \) on \(\mathbb{R}^+ \), the equality \(J_{-n}(r) = (-1)^n J_n(r) \) for \(n > 0 \), and integration formulas from Watson [13, p. 391, no. 385], the \(r \)-integral becomes

\[
\int_0^\infty \frac{1}{r} J_n(rs) \, dr = (\text{sgn}(n))^{n+1} / n .
\]

Thus

\[
\langle \mathcal{F}(\chi_n, \cdot)^{-1}, \varphi \rangle = (2\pi i^{-n}(\text{sgn}(n))^{n+1} / n) \langle \chi_n, \varphi \rangle.
\]

We have shown that if we take \(u = \chi_n \), then \(m = c_n \chi_n \) where \(c_n \) is the constant on the right. The relationship (1) between the Fourier transforms of \(u \) and \(m \) on \(\mathbb{T} \) follows for any \(m \) and \(u \).

Since the degree of \(U \) is \(-2\), for the extension of \(U \) to \(\mathbb{R}^2 \) it is necessary that \(\hat{u}(0) = 0 \). Since we have assumed that \(U \) has no delta measure component, it is also true that \(\hat{m}(0) = 0 \).

Define the convolution operator \(S \) on \(C^\infty(\mathbb{T}) \) by

\[
\hat{S}(n) = 2\pi (-\text{sgn}(n))^{n+1}.
\]

The operator \(S \) will play a central role in the classification of those homogeneous multipliers that give rise to bounded operators on \(H^1(\mathbb{R}^2) \). If we let \(\tau_\theta \) denote translation by \(\theta \), then a straightforward computation shows that \(S \) is invertible with inverse

\[
S^{-1} = (1/4\pi^2)\tau^- S .
\]

In fact, \(S \) can be written as

\[
S = (1/2)\tau_{\pi/2}\{H(I + \tau_n) + i(I - \tau_n)\}
\]

where \(H \) is the Hilbert transform on the circle, defined by \(\hat{H}(n) = -\text{sgn}(n) \).

In terms of \(S \), the relationship (1) between \(u \) and \(m \) is

\[
\hat{u}(n) = (2\pi)^{-2} i^n(-1)^n \cdot \hat{S}(n) \hat{m}(n) .
\]

As we observed in the introduction, if \(T_m \) extends to a bounded operator on \(L^2(\mathbb{R}^2) \), then \(m \) must be a bounded measurable function on \(\mathbb{T} \). Thus \(S \ast m \) is a function and we have

\[
(2\pi)^2 i(-1)^{n+1} \hat{u}(n)/n = (S \ast m)^\wedge(n) .
\]

Denoting the distributional derivative by \(D \), it follows that we may write \(u \) in \(D'(\mathbb{T}) \) as

\[
u = -D(S^{-1} \ast m).
\]

From Edwards [7, Theorem 12.5.16], \(u \) is a measure if and only if \(\hat{u}(n)/n \) is the Fourier transform of a function of bounded variation. Hence we have the following lemma.

Lemma 4. The function \(S \ast m \) has bounded variation if and only if \(u \) is a measure.

We will now prove the main result of the paper.
Theorem 5. Suppose \(m \) is a bounded measurable function on \(\mathbb{R}^2 \) which is homogeneous of degree 0. If the singular integral operator \(T_m \) is in \(B(H^1) \), then the functions \(S \ast m \), \(S \ast (\sin(\cdot)m) \), and \(S \ast (\cos(\cdot)m) \) have bounded variation on \(T \).

Proof. Assume \(T_m \) is in \(B(H^1) \). Let \(\eta \) be a radial function in \(C^\infty(\mathbb{R}^2) \) that is supported on \(\{x : 1/4 \leq |x| \leq 4\} \) and is identically equal to 1 on \(\{x : 1/2 \leq x \leq 2\} \). Then \(M = \mathcal{F}^{-1}(\eta) \) is in \(H^1(\mathbb{R}^2) \); see Taibleson and Weiss [12, p. 137]. Thus \(T_m(M) \) is in \(L^1(\mathbb{R}^2) \). For \(a > 0 \), we have

\[
\|T_m(M)\|_1 \geq \int_{\mathbb{R}^2} e^{-a|z|} |T_m(M)(z)| \, dz
\]

(2)

If \(m \) is expanded in a Fourier series, \(\{A_n\} \) is any decomposition of \(\mathbb{R}^2 \), \(x' \) is replaced by \(e^{i\theta} \), and \(z \) equals \(se^{i\beta} \), then (2) becomes

\[
\|T_m(M)\|_1 \geq \sum_n \int_{A_n} e^{-as} \left| \int_0^\infty \eta(r) \sum_k \hat{m}(k) \int_0^{2\pi} e^{ik\theta} e^{irs\cos(\theta-\beta)} d\theta \, r \, dr \right| \, dz.
\]

Performing the \(\theta \)-integration, we obtain

(3) \[
\|T_m(M)\|_1 \geq \sum_n \left| \int_{A_n} e^{-as} \int_0^\infty \eta(r) \sum_k \hat{m}(k) 2\pi(-i)^k e^{ik\beta} J_k(rs) r \, dr \, dz \right|
\]

where \(J_k \) is the \(k \)th-Bessel function. If we let \(\{A_n\} \) be the conical decomposition of \(\mathbb{R}^2 \) induced by a decomposition \(0 = b_0 < b_1 < \ldots < b_N = 2\pi \) for the circle, (3) becomes

(4) \[
\|T_m(M)\|_1 \geq \sum_n \left| \int_0^\infty \eta(r) \sum_k \hat{m}(k) 2\pi(-i)^k e^{ik\beta} J_k(rs) s \, ds \, r \, dr \right|.
\]

Using \(J_k = (\text{sgn}(k))^k J_k \) and an integration formula from Watson [13, p. 385], the \(s \)-integral can be explicitly evaluated as

(5) \[
\left(\frac{\text{sgn}(k)}{a^2 + r^2} \right)^k \frac{(1 + |k|)}{(2 + |k|)^{2k}} \cdot _2F_1 \left(\frac{|k| + 2}{2}, \left(\frac{|k| - 1}{2}, \left(\frac{|k| + 1}{2} + \frac{r^2}{(a^2 + r^2)} \right) \right) \right)
\]

where \(_2F_1 \) is a generalized hypergeometric function. Call the function displayed in (5) \(C(k, a, r) \). For \(a > 0 \), \(r\eta(r)C(k, a, r) \) is integrable and is dominated by \(r\eta(r)C(k, 0, r) \). The function \(C(k, 0, r) \) is given by

\[
C(k, 0, r) = \left(\frac{\text{sgn}(k)}{a^2 + r^2} \right)^k \frac{(1 + |k|)}{(2 + |k|)^{2k}} \cdot _2F_1 \left(\frac{|k| + 2}{2}, \left(\frac{|k| - 1}{2}, \left(\frac{|k| + 1}{2} + \frac{r^2}{(a^2 + r^2)} \right) \right) \right)
\]

(5) \[
C(k, 0, r) = \left(\frac{\text{sgn}(k)}{2^k r^2} \right)^k \frac{(1 + |k|)}{(2 + |k|)^{2k}} \cdot _2F_1 \left(\frac{|k| + 2}{2}, \left(\frac{|k| - 1}{2}, \left(\frac{|k| + 1}{2} + 1 \right) \right) \right)
\]
by using Gauss's Formula for \(\frac{\Gamma}{2F_1(\alpha, \beta; \gamma; 1)} \) (see Bateman Manuscript [1, p. 61]). Substituting this into (4) and performing the \(\beta \)-integration, we obtain the bound
\[
\| T_m(\mathcal{M}) \|_1 \geq C_\eta \cdot \sum_n \left| \sum_k 2\pi (-i)^{k+1} \text{sgn}(k) \hat{m}(k)(e^{-ikb_n} - e^{-ikb_{n-1}}) \right|
\]
\[
= C_\eta \cdot \sum_n \left| S \ast m(e^{ib_n}) - S \ast m(e^{ib_{n-1}}) \right|.
\]
As \(\| T_m(\mathcal{M}) \|_1 \) is finite, \(S \ast m \) is of bounded variation on \(T \).

To show that \(S \ast (\sin(\cdot)\tau) \) and \(S \ast (\cos(\cdot)\tau) \) must also be of bounded variation, we consider the two Riesz transforms \(R_1 \) and \(R_2 \), defined by \(\mathcal{F}(R_1)(re^{i\theta}) = i \cdot \sin(\theta) \) and \(\mathcal{F}(R_2)(re^{i\theta}) = i \cdot \cos(\theta) \). These operators are bounded on \(H^1 \); and hence, \(R_1 T_m \) and \(R_2 T_m \) are bounded on \(H^1 \) if \(T_m \) is bounded. Applying the preceding argument to these operators, we see that, \(S \ast (\sin(\cdot)\tau) \) and \(S \ast (\cos(\cdot)\tau) \) are of bounded variation. \(\square \)

Theorem 6. Suppose \(m \) is a bounded measurable function on \(\mathbb{R}^2 \) which is homogeneous of degree 0 and such that \(T_m \) is in \(B(H^1) \). Then \(m \) has an absolutely convergent Fourier series as a function on \(T \).

Proof. From Theorem 5, if \(T_m \in B(H^1) \), then \(S \ast m \), \(S \ast (\sin(\cdot)\tau) \), and \(S \ast (\cos(\cdot)\tau) \) are of bounded variation on \(T \). Thus \((-\text{sgn}(n))^{n+1} \hat{m}(n) \), \((-\text{sgn}(n))^{n+1} (\hat{m}(n+1) + \hat{m}(n-1)) \), and \((-\text{sgn}(n))^{n+1} (\hat{m}(n+1) - \hat{m}(n-1)) \) are the Fourier series of functions of bounded variation; and consequently, \((-\text{sgn}(n))^{n+1} \hat{m}(n+1) \) is the Fourier transform of a function of bounded variation. Taken together, all this implies that the Fourier transform
\[
(H \ast S \ast m)^\wedge(n) = (-\text{sgn}(n)) \cdot (-\text{sgn}(n))^{n+1} \hat{m}(n)
\]
is a finite sum of transforms of functions of bounded variation. From Zygmund [14, v. 1, p. 242], as both \(S \ast m \) and \(H \ast S \ast m \) are of bounded variation, \(S \ast m \) has an absolutely convergent Fourier series. However, \(\| (S \ast m)^\wedge(n) \| = 2\pi |\hat{m}(n)| \) and so \(m \) has an absolutely convergent Fourier series. \(\square \)

Theorem 7. Suppose \(m \) is a bounded measurable function on \(\mathbb{R}^2 \) which is homogeneous of degree 0 and \(T_m \) is in \(B(H^1) \). Then \(u \) is a measure on \(T \) and \(u \) is absolutely continuous with respect to Lebesgue measure.

Proof. Theorem 5 and Lemma 4 imply that \(u \) is a measure. The kernel of \(H \ast m \) is \(H \ast u \), because both \(H \) and the correspondence between kernels and multipliers are linear. In the proof of Theorem 6 it was shown that \(H \ast S \ast m \) has finite variation. Since \(H \ast S = S \ast H \), it follows that \(S \ast H \ast m \) has finite variation. Hence, by Lemma 4, \(H \ast u \) is also a measure. By the F. Riesz and M. Riesz Theorem, \(u \) is absolutely continuous. See Zygmund [14, v. 1, p. 285], and also Edwards [7, p. 99]. \(\square \)

Theorem 6 can be phrased for kernels \(u \). If \(u \) is a kernel in \(D'(T) \) and \(T_m \in B(H^1) \), then by Theorem 7 \(u \) is in \(L^1(T) \). By Theorem 6, \(m \) has an
Corollary 8. If \(u \) is in \(L^1(T) \) and the corresponding singular integral \(T_m \) is in \(B(H^1) \), then \(\sum_{n \neq 0} \frac{|\hat{u}(n)|}{|n|} < \infty \).

We now provide a partial converse to Theorem 5.

Theorem 9. Suppose \(m \) is a bounded measurable function on \(\mathbb{R}^2 \) which is homogeneous of degree 0. If \(S \ast m \), \(S \ast (\cos(\cdot)m) \), \(S \ast (\sin(\cdot)m) \) are of bounded variation on \(T \), then \(T_m \) is in \(B(L^p) \) for \(1 < p < \infty \).

Proof. Let \(BV(T) \) be the functions of bounded variation and suppose \(S \ast m \), \(S \ast (\cos(\cdot)m) \), \(S \ast (\sin(\cdot)m) \) \(\in BV(T) \). A periodic function \(f \) on \(\mathbb{R} \) is even or odd as a function on the circle according as \(f(t) = f(t+\pi) \) or \(f(t) = -f(t+\pi) \). Note that \(\cos(t) \) as a function on \(T \) is odd, not even. The even and odd parts of a function \(f \) are given by

\[
f_e(\theta) = \frac{f(\theta) + f(\theta + \pi)}{2}, \quad f_o(\theta) = \frac{f(\theta) - f(\theta + \pi)}{2}.
\]

Clearly \(f \in BV(T) \) if and only if \(f_e \) and \(f_o \) \(\in BV(T) \). As \(S \) is a multiplier operator, \((S \ast m)_o = S \ast (m_o) \) and \((S \ast m)_e = S \ast (m_e) \). For the odd function \(m_o \), we have \(m_o \in BV(T) \) as \(S \) reduces to a translation operator for odd functions. By Lemma 4, the corresponding kernel \(u_0 \) is a measure. As a measure on \([-\pi, \pi]\), it satisfies

\[
\int g(t + \pi) \, du_0(t) = -\int g(t) \, du_0(t)
\]

for periodic functions \(g \). That is, \(u_0 \) is an odd measure. A straightforward adaptation of the “method of rotations” shows that \(T_{m_o} \in B(L^p) \) for \(1 < p < \infty \). See Theorem (2.6) and the proof preceding it in Chapter VI of [11], where the kernel is an odd function in \(L^1(T) \). For the even multiplier \(m_e \), the functions \(\sin(\cdot)m_e \), \(\cos(\cdot)m_e \) are both odd functions. We have

\[
S \ast (\cos(\cdot)m_e) = (S \ast (\cos(\cdot)m)_0, \quad S \ast (\sin(\cdot)m_e) = (S \ast (\sin(\cdot)m)_0,
\]

and so \(S \ast \sin(\cdot)m_e \) and \(S \ast (\cos(\cdot)m_e) \) are in \(BV(T) \). Hence \(\sin(\cdot)m_e \) and \(\cos(\cdot)m_e \) are also in \(BV(T) \) and so are multipliers of kernels which are odd measures. As before, the corresponding operators are in \(B(L^p) \); that is, the Riesz transforms

\[
R_1 T_{m_e}, \quad R_2 T_{m_e} \in B(L^p).
\]

Each \(R_j \) is also in \(B(L^p) \), and so also is each \(R_j^2 T_{m_e} \). So \(T_{m_e} \in B(L^p) \) as \(R_1^2 + R_2^2 = -I \). As \(T_m = T_{m_0} + T_{m_e} \), we have \(T_m \in B(L^p) \) for \(1 < p < \infty \). \(\square \)

In [9], Ricci and Weiss give a characterization of \(H^1(\sum_{n=1}^\infty) \) that is particularly suitable to our presentation here. They consider Calderon-Zygmund singular operators (distributions) \(T \) with kernel \(k(x) = u(x')/|x|^n \), where
If \(u \in L^1(\sum_{n=1}^\infty) \) and has integral zero. By composing \(T \) with the Riesz transforms \(R_j \) (\(1 \leq j \leq n \)), one obtains \(n \) distributions that are each homogeneous of degree \(-n\). In general, these distributions may or may not be given by kernels in \(L^1(\sum_{n=1}^\infty) \). Ricci and Weiss characterize \(H^1(\sum_{n=1}^\infty) \) by showing that \(u \in H^1(\sum_{n=1}^\infty) \) if and only if \(R_j \circ T \) has a kernel \(u_j \in L^1(\sum_{n=1}^\infty) \). In the case of dimension 2, we know from Theorem 7 that the operators \(R_i \circ U \) and \(R_2 \circ U \) have kernels \(u_1 \) and \(u_2 \) in \(L^1(T) \) if \(U = T^m \) is in \(B(H^1) \). Hence the following theorem results from the Ricci-Weiss result and our Theorem 7.

Theorem 10. If \(U \) is a distribution that is homogeneous of degree \(-2\) and has an extension in \(B(H^1(\mathbb{R}^2)) \), then the kernel \(u \) of \(U \) is in \(H^1(T) \).

Note that Corollary 8 follows immediately from Theorem 10.

It is well known that if \(u \in H^1(T) \), then the Calderon-Zygmund singular integral \(T^m \) with kernel \(u \) is bounded on \(L^p \) for \(1 < p < \infty \), and of course, \(\sum_{n \neq 0} |\hat{u}(n)| < \infty \) holds. See for example Connett [3]. Thus \(u \in H^1(T) \) is a sufficient condition for boundedness of \(T^m \) on \(L^p \) for \(1 < p < \infty \). Theorem 10 gives a corresponding necessary condition, with \(H^1 \) replacing \(L^p \).

Remarks on sufficient conditions for \(T^m \) to be in \(B(H^1) \). The condition that \(m \) have an absolutely convergent Fourier series is not sufficient to guarantee that \(T^m \) extends to an operator on \(H^1 \). This is easily seen by considering lacunary series and using Theorem 7. For example, if \(m(\theta) = \sum e^{i2^n \theta}/n^2 \), then \(|\hat{u}(2^n)| = 2^n / n^2 \) and \(u \) cannot be a measure. In fact, by considering similar examples, one sees that conditions of the form

\[
\sum n^\delta |\hat{m}(n)| < \infty
\]

for \(0 \leq \delta < 1 \) are insufficient to guarantee that \(T^m \in B(H^1) \). Conversely, Taibleson and Weiss [12] show that the condition

\[
\sum |\hat{m}(n)|^2 n^4 < \infty
\]

implies that \(T^m \) is bounded on \(H^p \) for \(2/3 < p \leq 1 \), by showing that \(T^m \) sends atoms to molecules. Daly [4] has shown that if \(T^m \) sends atoms to molecules boundedly, then condition (6) is satisfied. Taken together, the state of results on sufficient conditions for \(T^m \in B(H^p) \) in terms of \(m \) appears to be these results by Daly, Taibleson, and Weiss and our Theorem 9.

The condition that \(S \ast m \) is of bounded variation is not sufficient to imply that \(T^m \) is bounded on \(H^p(0 < p \leq 1) \). This can be seen by considering any odd function \(m \) that is of bounded variation, but not continuous, on \(T \).

References

Department of Mathematics, University of Colorado, Colorado Springs, Colorado 80933

Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003