Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the classification of homogeneous multipliers bounded on $ H\sp 1({\bf R}\sp 2)$

Authors: James E. Daly and Keith Phillips
Journal: Proc. Amer. Math. Soc. 106 (1989), 685-696
MSC: Primary 42B15; Secondary 42B20, 42B30
MathSciNet review: 957264
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary and sufficient conditions for Calderon-Zygmund singular integral operators to be bounded operators on $ {H^1}({{\mathbf{R}}^2})$ are investigated. Let $ m$ be a bounded measurable function on the circle, extended to $ {{\mathbf{R}}^2}$ by homogeneity $ (m(rx) = m(x))$. If the Calderon-Zygmund singular integral operator $ {T_m}$, defined by $ {T_m}f = {\mathcal{F}^{ - 1}}(m\mathcal{F}(f))$, is bounded on $ {H^1}({{\mathbf{R}}^2})$, then it is proved that $ {S^*}m$ has bounded variation on the circle, where the Fourier transform of $ S$ on the circle is $ \widehat{S}(n) = {( - {\text{isgn(}}n))^{n + 1}}$. This implies that $ m$ must have an absolutely convergent Fourier series on the circle, and other relations on the Fourier series of $ m$. Partial converses are also given. The problems are formulated in terms of distributions on the circle and on $ {{\mathbf{R}}^2}$.

References [Enhancements On Off] (What's this?)

  • [1] Bateman Manuscript Project, Higher transcendental functions I, A. Erdelyi, ed., McGraw-Hill, 1953.
  • [2] R. Coifman and G. Weiss, Extensions of Hardy spaces and their uses in analysis. Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • [3] W. Connett, Singular integrals near $ {L^1}$, Proc. Sympos. Pure Math., Harmonic Analysis on Euclidean Spaces I 35 (1979), 163-166. MR 545253 (80i:42014)
  • [4] J. Daly, On the necessity of the Hörmander condition for multipliers on $ {H^p}({{\mathbf{R}}^n})$, Proc. Amer. Math. Soc. 88 (1983), 321-325. MR 695267 (85c:42023)
  • [5] J. Daly and K. Phillips, On singular integrals, multipliers, $ {H^1}$, and Fourier series, the local field phenomenon, Math. Ann. 265 (1983), 181-219. MR 719136 (85c:43008)
  • [6] W. Donoghue, Distributions and Fourier transforms, Academic Press, 1969.
  • [7] R. E. Edwards, Fourier series, a modern introduction, Vol. 2, 2nd edition, Springer-Verlag, 1982. MR 667519 (83k:42001)
  • [8] L. Hörmander, The analysis of partial differential operators I, Springer-Verlag, 1983.
  • [9] F. Ricci and G. Weiss, A characterization of $ {H^1}({\sum _{n - 1}})$, Proc. Sympos. Pure Math., Harmonic Analysis on Euclidean Spaces I 35 (1979), 289-294. MR 545268 (80m:30043)
  • [10] E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970. MR 0290095 (44:7280)
  • [11] E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, 1971. MR 0304972 (46:4102)
  • [12] M. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980). MR 604370 (83g:42012)
  • [13] G. N. Watson, Theory of Bessel functions, Cambridge Univ. Press, 1962.
  • [14] A. Zygmund, Trigonometric series, Cambridge Univ. Press, 1968. MR 0236587 (38:4882)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B15, 42B20, 42B30

Retrieve articles in all journals with MSC: 42B15, 42B20, 42B30

Additional Information

Keywords: Singular integrals, homogeneous distributions, multipliers, Hardy spaces
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society