Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the second derivatives of convex functions on Hilbert spaces

Author: Nobuyuki Kato
Journal: Proc. Amer. Math. Soc. 106 (1989), 697-705
MSC: Primary 47H05; Secondary 46G05, 58C20
MathSciNet review: 960646
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \phi $ be a proper l.s.c. convex function on a real Hilbert space $ H$. We show that if $ H$ is separable, then $ \phi $ is twice differentiable in some sense on a dense subset of the graph of $ \partial \phi $.

References [Enhancements On Off] (What's this?)

  • [1] R. Aren, Operational calculus of linear relations, Pacific J. Math. 11 (1961), 9-23. MR 0123188 (23:A517)
  • [2] H. Asakawa, Restriction of maximal monotone operator to closed linear subspace, TRU Math. 23 (1987), 97-116. MR 931763 (89k:47083)
  • [3] H. Asakawa, private communication.
  • [4] H. Attouch, Familles d'operateurs maximaux monotones et measurabilite, Ann. Mat. Pura Appl. 120 (1979), 35-111. MR 551062 (81h:47046)
  • [5] J. P. Aubin and I. Ekeland, Applied nonlinear analysis, Wiley-Interscience, New York, 1984. MR 749753 (87a:58002)
  • [6] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Groningen, 1976. MR 0390843 (52:11666)
  • [7] H. Brezis, Operateurs maximaux monotones, North-Holland, Amsterdam, 1973.
  • [8] H. Brezis and F. E. Browder, Linear maximal monotone operators and singular nonlinear integral equations of Hammerstein type, Nonlinear Analysis (L. Cesari, R. Kannan and H. F. Weinberger, eds.), Academic Press, New York, 1978. MR 0513047 (58:23790)
  • [9] J.-B. Hiriart-Urruty, A new set-valued second order derivatives for convex functions, Mathematics for Optimization, Mathematical Studies Series 129, North-Holland, Amsterdam, 1986. MR 874365 (88d:90092)
  • [10] F. Mignot, Contrôle dans les inequations variationelles elliptiques, J. Funct. Anal. 22 (1976), 130-185. MR 0423155 (54:11136)
  • [11] J. L. Ndoutoume, Calcul differential generalise du second ordre, Publ. AVAMAC Université du Perpignan, vol. 2, 1986.
  • [12] R. T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Int. Poincare Analyse Non Linéaire 2 (1985), 167-184. MR 797269 (87c:49021)
  • [13] G. Salinetti and R. J.-B. Wets, On the relations between two types of convergence for functions, J. Math. Anal. Appl. 60 (1977), 211-226. MR 0479398 (57:18828)
  • [14] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970. MR 0290095 (44:7280)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H05, 46G05, 58C20

Retrieve articles in all journals with MSC: 47H05, 46G05, 58C20

Additional Information

Keywords: Convex function, subdifferential, second derivative, convergence in the sense of Mosco
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society