Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the coherence and weak dimension of the rings $ R\langle x\rangle$ and $ R(x)$


Author: Sarah Glaz
Journal: Proc. Amer. Math. Soc. 106 (1989), 579-587
MSC: Primary 13F20
DOI: https://doi.org/10.1090/S0002-9939-1989-0961405-9
MathSciNet review: 961405
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a commutative ring. We first derive necessary and sufficient conditions for the rings $ R\left\langle x \right\rangle $ and $ R(x)$ to be coherent. Next, for stably coherent rings of finite weak dimension exact relations are found between the weak dimension of $ R$ and that of $ R\left\langle x \right\rangle $ and $ R(x)$. These relations are used to determine necessary and sufficient conditions for $ R\left\langle x \right\rangle $ and $ R(x)$ to be Von Neumann regular or semihereditary.


References [Enhancements On Off] (What's this?)

  • [1] T. Akiba, On the normality of $ R(x)$, J. Math. Kyoto Univ. 20 (1980), 749-753. MR 592358 (82b:13002)
  • [2] B. Alfonsi, Grade et profondeur en algebre non Noetherienne, Ph. D. thesis, Univ. de Poiters, 1977.
  • [3] -, Grade non-noetherien, Comm. Algebra 9 (1981), 811-840. MR 611560 (82j:13012)
  • [4] D. D. Anderson, Multiplication ideals, multiplication rings and the ring $ R(x)$, Canad. J. Math. 28 (1976), 760-768. MR 0424794 (54:12752)
  • [5] -, Some remarks on the ring $ R(x)$, Comment. Math. Univ. St. Paul. 26 (1977), 137-140. MR 0476720 (57:16279)
  • [6] D. D. Anderson, D. F. Anderson and R. Markanda, The rings $ R(x)$ and $ R\left\langle x \right\rangle $, J. Algebra 95 (1985), 96-115. MR 797658 (86k:13020)
  • [7] J. Arnold, On the ideal theory of the Kronecker function ring and the domain $ D(x)$, Canad. J. Math. 21 (1969), 558-563. MR 0244222 (39:5539)
  • [8] J. Bertin, Anneaux cohérents reguliers, C. R. Acad. Sci. Paris Ser. A 273 (1971), 1-2. MR 0279094 (43:4820)
  • [9] N. Bourbaki, Commutative Algebra, Addison-Wesley, Reading, MA, 1972.
  • [10] J. Brewer and D. Costa, Projective modules over some non-Noetherian polynomial rings, J. Pure Appl. Algebra 13 (1978), 157-163. MR 507807 (80a:13009)
  • [11] J. Brewer and W. Heinzer, $ R$ Noetherian implies $ R\left\langle x \right\rangle $ is a Hilbert ring, J. Algebra 67 (1980), 204-209. MR 595028 (82d:13010)
  • [12] J. Carrig and W. Vasconcelos, Projective ideals in rings of dimension one, Proc. Amer. Math. Soc. 71 (1978), 169-173. MR 0491655 (58:10862)
  • [13] S. Chase, Direct product of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. MR 0120260 (22:11017)
  • [14] D. Ferrand, Trivialisation des modules projectifs, La methods de Kronecker, J. Pure Appl. Algebra 24 (1982), 261-264. MR 656847 (84h:13009)
  • [15] S. Glaz, On the weak dimension of coherent group rings, Comm. Algebra 15 (1987), 1831-1858. MR 898295 (88g:16024)
  • [16] -, Regular symmetric algebras, J. of Algebra 112 (1988), 129-138. MR 921969 (89b:13014)
  • [17] -, Commutative coherent rings, Lecture Notes in Mathematics, no. 1371, Springer-Verlag, Berlin and New York, (1989). MR 999133 (90f:13001)
  • [18] G. Hinkle and J. Huckaba, The generalized Kronecker function ring and the ring $ R(x)$, J. Reine Angew. Math. 292 (1977), 25-36. MR 0447213 (56:5528)
  • [19] G. Horrocks, Projective modules over polynomial rings, Proc. London Math. Soc. 14 (1964), 714-718. MR 0169878 (30:121)
  • [20] J. Huckaba and I. Papick, A localization of $ R[x]$, Canad. J. Math 33 (1981), 103-115. MR 608858 (82g:13006)
  • [21] -, Quotient rings of polynomial rings, Manuscripta Math. 31 (1980), 167-196. MR 576496 (81h:13012)
  • [22] I. Kaplansky, Fields and rings, Univ. of Chicago Press, Chicago, IL, 1969. MR 0269449 (42:4345)
  • [23] Y. Lequain and A. Simis, Projective modules over $ R[{x_1}, \ldots ,{x_n}]R$ a Prüfer domain, J. Pure Appl. Algebra 18 (1980), 165-171. MR 585221 (82e:13010)
  • [24] L. Le Riche, The ring $ R\left\langle x \right\rangle $, J. Algebra 67 (1980), 327-341. MR 602067 (82d:13011)
  • [25] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, London and New York, 1986. MR 879273 (88h:13001)
  • [26] B. McDonald and W. D. Waterhouse, Projective modules over rings with many units, Proc. Amer. Math. Soc. 83 (1981), 455-458. MR 627668 (82j:13010)
  • [27] K. McDowell, Commutative coherent rings, Math. Report 66, McMaster University, 1974.
  • [28] D. McRae, Homological dimensions of finitely presented modules, Math. Scand. 28 (1971), 70-76. MR 0306265 (46:5391)
  • [29] Y. Quentel, Sur le théorème d'Auslander-Buchsbaum, C. R. Acad. Sci. Paris Ser. A 273 (1971), 880-881. MR 0301005 (46:165)
  • [30] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171. MR 0427303 (55:337)
  • [31] L. Ratliff, $ A(x)$ and GB-Noetherian rings, Rocky Mountain J. Math. 9 (1979), 337-353. MR 519947 (80h:13011)
  • [32] J. Rotman, Notes on homological algebra, Van Nostrand Math. Studies 26, (1970). MR 0409590 (53:13342)
  • [33] W. Vasconcelos, Divisor theory in module categories, North-Holland Math. Stud. 14 (1974). MR 0498530 (58:16637)
  • [34] -, The Rings of dimension two, Lecture Notes in Pure and Appl. Math. 22 (1976).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F20

Retrieve articles in all journals with MSC: 13F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0961405-9
Keywords: Regular rings, coherence, Von Neumann regular, semihereditary, depth, grade, regular sequence
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society