Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Large groups of symmetries of handlebodies


Authors: A. Miller and B. Zimmermann
Journal: Proc. Amer. Math. Soc. 106 (1989), 829-838
MSC: Primary 57M99; Secondary 57S25, 57S30
DOI: https://doi.org/10.1090/S0002-9939-1989-0962246-9
MathSciNet review: 962246
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {V_g}$ be an orientable three-dimensional handlebody with genus $ g > 1$. Let $ N(g)$ be the largest order among all finite groups which act effectively on $ {V_g}$ and preserve orientation. We show that $ 4(g + 1) \leq N(g) \leq 12(g - 1)$, and that $ N(g)$ equals either $ 8(q - 1)$ or $ 12(g - 1)$ when $ g$ is odd. Moreover each of the indicated upper and lower bounds are achieved for infinitely many genera $ g$. The techniques which are used lead to more detailed results and also specialize to yield similar results for compact surfaces with nonempty boundary.


References [Enhancements On Off] (What's this?)

  • [A] R. Accola, On the number of automorphisms of a closed Riemann surface, Trans. Amer. Math. Soc. 131 (1968), 398-408. MR 0222281 (36:5333)
  • [GM] N. Greenleaf and C. May, Bordered Klein surfaces with maximal symmetry, Trans. Amer. Math. Soc. 274 (1982), 265-283. MR 670931 (84f:14022)
  • [H] W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. (2) 17 (1966), 86-97. MR 0201629 (34:1511)
  • [M$ _{1}$] C. Maclachlan, A bound for the number of automorphisms of a compact Riemann surface, J. London Math. Soc. 44 (1969), 265-272. MR 0236378 (38:4674)
  • [M$ _{2}$] C. May, A bound for the number of automorphisms of a compact Klein surface with boundary, Proc. Amer. Math. Soc. 63 (1977), 273-280. MR 0435385 (55:8345)
  • [MMZ$ _{1}$] D. McCullough, A. Miller, and B. Zimmermann, Group actions on handlebodies, Proc. London Math. Soc. (to appear).
  • [MMZ$ _{2}$] -, Group actions on nonclosed surfaces, 1988, (preprint).
  • [ZVC] H. Zieschang, E. Vogt, and H-D. Coldewey, Surfaces and planar discontinuous groups, Lecture Notes in Math., vol. 835, Springer-Verlag, Berlin and New York, 1980. MR 606743 (82h:57002)
  • [Z$ _{1}$] B. Zimmermann, Uber Abbildungsklassen von Henkelkörpern, Arch. Math. 33 (1979), 379-382. MR 564296 (82k:57002)
  • [Z$ _{2}$] -, Uber Homoömorphismen $ n$-dimensionaler Henkelkörper und endliche Erweiterungen von Schottky-Gruppen, Comment. Math. Helv. 56 (1981), 474-486. MR 639363 (83f:57025)
  • [Z$ _{3}$] R. Zomorrodian, Nilpotent automorphism groups of Riemann surfaces, Trans. Amer. Math. Soc. 288 (1985), 241-255. MR 773059 (86d:20059)
  • [Z$ _{4}$] -, Classification of $ p$-groups of automorphisms of Riemann surfaces and their lower central series, Glasgow Math. J. 29 (1987), 237-244. MR 901670 (88j:20050)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M99, 57S25, 57S30

Retrieve articles in all journals with MSC: 57M99, 57S25, 57S30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0962246-9
Keywords: $ 3$-dimensional handlebody, finite group action, graph of groups, compact $ 2$-manifold with boundary
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society